175 research outputs found

    Atmospheric neutrino flux around Super-Kamiokande

    No full text
    The simulated atmospheric neutrino flux around Super-Kamiokande detector is tabulated in this report. The corresponding fitting is also given

    Does the threshold representation associated with the autoconversion process matter?

    Get PDF
    International audienceDifferent ad hoc threshold functions associated with the autoconversion process have been arbitrarily used in atmospheric models. However, it is unclear how these ad hoc functions impact model results. Here systematic investigations of the sensitivities of climatically-important properties: CF (cloud fraction), LWP (liquid water path), and AIE (aerosol indirect effect) to threshold functions have been performed using a 3-D cloud-resolving model. It is found that the effect of threshold representations is larger on instantaneous values than on daily averages; and the effect depends on the percentage of clouds in their transitional stages of converting cloud water to rain water. For both the instantaneous values and daily averages, the sensitivity to the specification of critical radius is more significant than the sensitivity to the "smoothness" of the threshold representation (as embodied in the relative dispersion of droplet size distribution) for drizzling clouds. Moreover, the impact of threshold representations on the AIE is stronger than that on CF and LWP

    Comparing and combining measurement-based and driven-dissipative entanglement stabilization

    Full text link
    We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconducting qubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a "passive" reservoir engineering method and an "active" correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This "nested" feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.Comment: 40 pages, 12 figure

    Effects of vegetation patterns on yields of the surface and subsurface waters in the Heishui Alpine Valley in west China

    No full text
    International audienceThe relationships between different vegetation types and water yields were investigated in the Heishui Valley of the upper Yangtze River in western China. Contributions of groundwater and the water from surface and subsurface in different tributaries were, respectively, computed based on the stable isotope data, while the percentages of different vegetation covers were achieved by remote sensing in landscape scale. Based on the relationships between different vegetation types and water yields in seven watersheds, we found that reduction in the total vegetation, forest and subalpine coniferous forest covers could cause increasing in surface and subsurface water yields, while the water yield increased with the alpine shrub and meadow cover increasing, respectively. All the relationships were displayed as the low altitude and high altitude patterns, which were caused by the different vegetation characteristics and topography. We also found effects of the total vegetation cover played the most important role on water yield at large scale while the coniferous forest cover would affect the water yield at relatively small scale

    Toward a climate downscaling for the Eastern Mediterranean at high-resolution

    Get PDF
    International audienceAs a first step toward downscaling global model simulations of future climates for the eastern Mediterranean Sea and surrounding land area, mesoscale-model simulations with the Pennsylvania State University ? National Center for Atmospheric Research (NCAR) mesoscale model, version 5 (MM5) are verified in the context of precipitation amount. The simulations are driven with January NCAR-NCEP reanalysis project (NNRP) lateral-boundary conditions and assimilate surface and upper air observations. The results of the simulations compare reasonably well with rain gauge and satellite estimates of monthly total precipitation, and the model reproduces the overall trends in inter-annual precipitation variability for one test region. Cyclones during the period were tracked, and their properties identified

    Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China

    No full text
    International audienceWe measured levels of ambient volatile organic compounds (VOCs) at seven sites in the Pearl River Delta (PRD) region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ) and Xinken (XK), were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40%) in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%). Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of the VOCs did not exhibit noticeable changes during these episodes, except that the fraction of aromatics was about 10% higher. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles); those at XK were influenced by both local emissions and transportation of air mass from upwind areas

    Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information

    Full text link
    The remarkable discovery of Quantum Error Correction (QEC), which can overcome the errors experienced by a bit of quantum information (qubit), was a critical advance that gives hope for eventually realizing practical quantum computers. In principle, a system that implements QEC can actually pass a "break-even" point and preserve quantum information for longer than the lifetime of its constituent parts. Reaching the break-even point, however, has thus far remained an outstanding and challenging goal. Several previous works have demonstrated elements of QEC in NMR, ions, nitrogen vacancy (NV) centers, photons, and superconducting transmons. However, these works primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to extend the lifetime of quantum information over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of coherent states, or cat states of a superconducting resonator. Moreover, the experiment implements a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode, and correct. As measured by full process tomography, the enhanced lifetime of the encoded information is 320 microseconds without any post-selection. This is 20 times greater than that of the system's transmon, over twice as long as an uncorrected logical encoding, and 10% longer than the highest quality element of the system (the resonator's 0, 1 Fock states). Our results illustrate the power of novel, hardware efficient qubit encodings over traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming the basic concepts to exploring the metrics that drive system performance and the challenges in implementing a fault-tolerant system
    • 

    corecore