12,264 research outputs found

    Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming

    Get PDF
    In this paper, we propose multi-input multi-output (MIMO) beamforming designs towards joint radar sensing and multi-user communications. We employ the Cramr-Rao bound (CRB) as a performance metric of target estimation, under both point and extended target scenarios. We then propose minimizing the CRB of radar sensing while guaranteeing a pre-defined level of signal-to-interference-plus-noise ratio (SINR) for each communication user. For the single-user scenario, we derive a closed form for the optimal solution for both cases of point and extended targets. For the multi-user scenario, we show that both problems can be relaxed into semidefinite programming by using the semidefinite relaxation approach, and prove that the global optimum can always be obtained. Finally, we demonstrate numerically that the globally optimal solutions are reachable via the proposed methods, which provide significant gains in target estimation performance over state-of-the-art benchmarks

    Influence of annealing on Fermi-level pinning and current transport at Au-Si and Au-GaAs Interfaces

    Get PDF
    The measurements of internal photoemission and photovoltage within the temperature range of 7-300 K have been performed for unannealed and annealed Au/n-Si and Au/n-GaAs samples. From the internal photoemission measurements, it was observed that annealing at different temperatures does not affect the relativity of interfacial Fermi-level pinning to either the conduction band (for Au/GaAs) or the valence band (for Au/Si) but leads to a significant change of the Schottky barrier height. On the other hand, the photovoltage measurements show that the current transport at the metal/semiconductor interfaces is seriously affected by annealing. © 1995 American Institute of Physics.published_or_final_versio

    Interfacial Fermi level and surface band bending in Ni/semi-insulating GaAs contact

    Get PDF
    For nickel on the chemically clean surface of undoped semi-insulating GaAs at room temperature, an upward surface band bending of 0.062 eV and a barrier height of 0.690 eV have been observed by the photovoltage and the internal photoemission techniques, respectively. The observed surface band bending is in excellent agreement with its predicted value, and the observed barrier height also agrees very well with its value from the very careful analysis of reversed I-V data. It has been determined that the interfacial Fermi level lies at 0.690 eV below the GaAs conduction band minimum at the interface. The interfacial Fermi level is found to coincide with the energy level of the EL2 native defect, indicating the importance of the EL2 in the Fermi level pinning at the interface. © 1995 American Institute of Physics.published_or_final_versio

    Characterization of Pt-Si interface by spectroscopic ellipsometry

    Get PDF
    Spectroscopic ellipsometric measurements for Pt/n-Si samples with different thickness of Pt films have been performed. The thickness of the Pt films determined with the three-phase model (air/Pt/Si) changes with the wavelength λ while that with the four-phase model (air/Pt/interface layer/Si) remains unchanged, showing the existence of an interface layer. At the same time, the apparent optical dielectric constants of the interface layer as a function of λ are also obtained. A calculation based on the effective medium theory is carried out to simulate the optical dielectric data of the interface layer. Some structural information of the interface layer is obtained from the calculation. © 1994 American Institute of Physics.published_or_final_versio

    Effect of Al addition on microstructure of AZ91D

    Get PDF
    Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared

    Passive PT -symmetric couplers without complex optical potentials

    Full text link
    © 2015 American Physical Society. In addition to the implementation of parity-time-(PT-) symmetric optical systems by carefully and actively controlling the gain and loss, we show that a 2×2 PT-symmetric Hamiltonian has a unitarily equivalent representation without complex optical potentials in the resulting optical coupler. Through the Naimark dilation in operator algebra, passive PT-symmetric couplers can thus be implemented with a refractive index of real values and asymmetric coupling coefficients. This opens up the possibility to implement general PT-symmetric systems with state-of-the-art asymmetric slab waveguides, dissimilar optical fibers, or cavities with chiral mirrors

    A study on the BVOC emissions in Hong Kong

    Get PDF
    published_or_final_versio

    Excitation Spectra And Hard-core Thermodynamics Of Bosonic Atoms In Optical Superlattices

    Get PDF
    A generalized double-well-basis coupled representation is proposed to investigate excitation spectra and thermodynamics of bosonic atoms in double-well optical superlattices. In the hard-core limit and with a filling factor of one, excitations describing the creation of pairs of a doubly occupied state and a simultaneous empty state, and those from a symmetric singly occupied state to an antisymmetric state are carefully analyzed and their excitation spectra are calculated within mean-field theory. Based on the hard-core statistics, the equilibrium properties such as heat capacity and particle populations are studied in detail. The cases with other filling factors are also briefly discussed.published_or_final_versio

    Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Dual Drug-Loaded Biofunctionalized Amphiphilic Chitosan Nanoparticles: Enhanced Synergy between Cisplatin and Demethoxycurcumin against Multidrug-Resistant Stem-Like Lung Cancer Cells

    Get PDF
    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept which addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, release kinetics may differ between drugs and general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggest preclinical studies using relevant disease models to be justified
    • 

    corecore