109,292 research outputs found
Distributed Flow Scheduling in an Unknown Environment
Flow scheduling tends to be one of the oldest and most stubborn problems in
networking. It becomes more crucial in the next generation network, due to fast
changing link states and tremendous cost to explore the global structure. In
such situation, distributed algorithms often dominate. In this paper, we design
a distributed virtual game to solve the flow scheduling problem and then
generalize it to situations of unknown environment, where online learning
schemes are utilized. In the virtual game, we use incentives to stimulate
selfish users to reach a Nash Equilibrium Point which is valid based on the
analysis of the `Price of Anarchy'. In the unknown-environment generalization,
our ultimate goal is the minimization of cost in the long run. In order to
achieve balance between exploration of routing cost and exploitation based on
limited information, we model this problem based on Multi-armed Bandit Scenario
and combined newly proposed DSEE with the virtual game design. Armed with these
powerful tools, we find a totally distributed algorithm to ensure the
logarithmic growing of regret with time, which is optimum in classic
Multi-armed Bandit Problem. Theoretical proof and simulation results both
affirm this claim. To our knowledge, this is the first research to combine
multi-armed bandit with distributed flow scheduling.Comment: 10 pages, 3 figures, conferenc
Scheme for deterministic Bell-state-measurement-free quantum teleportation
A deterministic teleportation scheme for unknown atomic states is proposed in
cavity QED. The Bell state measurement is not needed in the teleportation
process, and the success probability can reach 1.0. In addition, the current
scheme is insensitive to the cavity decay and thermal field.Comment: 3 pages, no figur
An Online Approach to Dynamic Channel Access and Transmission Scheduling
Making judicious channel access and transmission scheduling decisions is
essential for improving performance as well as energy and spectral efficiency
in multichannel wireless systems. This problem has been a subject of extensive
study in the past decade, and the resulting dynamic and opportunistic channel
access schemes can bring potentially significant improvement over traditional
schemes. However, a common and severe limitation of these dynamic schemes is
that they almost always require some form of a priori knowledge of the channel
statistics. A natural remedy is a learning framework, which has also been
extensively studied in the same context, but a typical learning algorithm in
this literature seeks only the best static policy, with performance measured by
weak regret, rather than learning a good dynamic channel access policy. There
is thus a clear disconnect between what an optimal channel access policy can
achieve with known channel statistics that actively exploits temporal, spatial
and spectral diversity, and what a typical existing learning algorithm aims
for, which is the static use of a single channel devoid of diversity gain. In
this paper we bridge this gap by designing learning algorithms that track known
optimal or sub-optimal dynamic channel access and transmission scheduling
policies, thereby yielding performance measured by a form of strong regret, the
accumulated difference between the reward returned by an optimal solution when
a priori information is available and that by our online algorithm. We do so in
the context of two specific algorithms that appeared in [1] and [2],
respectively, the former for a multiuser single-channel setting and the latter
for a single-user multichannel setting. In both cases we show that our
algorithms achieve sub-linear regret uniform in time and outperforms the
standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201
Bichromatic field generation from double-four-wave mixing in a double-electromagnetically induced transparency system
We demonstrate the double electromagnetically induced transparency
(double-EIT) and double four-wave mixing (double-FWM) based on a new scheme of
non-degenerate four-wave mixing (FWM) involving five levels of a cold 85Rb
atomic ensemble, in which the double-EIT windows are used to transmit the probe
field and enhance the third-order nonlinear susceptibility. The phase-matching
conditions for both four-wave mixings could be satisfied simultaneously. The
frequency of one component of the generated bichromatic field is less than the
other by the ground-state hyperfine splitting (3GHz). This specially designed
experimental scheme for simultaneously generating different nonlinear
wave-mixing processes is expected to find applications in quantum information
processing and cross phase modulation. Our results agree well with the
theoretical simulation.Comment: Accepted by NJ
Recommended from our members
Reaction Mechanisms for Long-Life Rechargeable Zn/MnO 2 Batteries
Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density. Their usage, however, is largely hampered by the fast capacity fade. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO 2 system. In this study, we find that both H + /Zn 2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By limiting the irreversible conversion reactions at â1.26 V, we successfully demonstrate ultrahigh power and long life that are superior to most of the reported ZIBs or even some lithium-ion batteries
Descreening of Field Effect in Electrically Gated Nanopores
This modeling work investigates the electrical modulation characteristics of
field-effect gated nanopores. Highly nonlinear current modulations are observed
in nanopores with non-overlapping electric double layers, including those with
pore diameters 100 times the Debye screening length. We attribute this extended
field-effect gating to a descreening effect, i.e. the counter-ions do not fully
relax to screen the gating potential due to the presence of strong ionic
transport
- …