66 research outputs found

    Detecting Blackholes and Volcanoes in Directed Networks

    Full text link
    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to further exploit the pruning results from the first pruning scheme. Indeed, a target directed graphs can be divided into several disconnected subgraphs by the first pruning scheme, and thus the blackhole finding can be conducted in each disconnected subgraph rather than in a large graph. Based on these two pruning schemes, we also develop an iBlackhole-DC algorithm. Finally, experimental results on real-world data show that the iBlackhole-DC algorithm can be several orders of magnitude faster than the iBlackhole algorithm, which has a huge computational advantage over a brute-force method.Comment: 18 page

    Uncertainty-Aware Bootstrap Learning for Joint Extraction on Distantly-Supervised Data

    Full text link
    Jointly extracting entity pairs and their relations is challenging when working on distantly-supervised data with ambiguous or noisy labels. To mitigate such impact, we propose uncertainty-aware bootstrap learning, which is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths. Specifically, we first explore instance-level data uncertainty to create an initial high-confident examples. Such subset serves as filtering noisy instances and facilitating the model to converge fast at the early stage. During bootstrap learning, we propose self-ensembling as a regularizer to alleviate inter-model uncertainty produced by noisy labels. We further define probability variance of joint tagging probabilities to estimate inner-model parametric uncertainty, which is used to select and build up new reliable training instances for the next iteration. Experimental results on two large datasets reveal that our approach outperforms existing strong baselines and related methods.Comment: ACL 2023 main conference short pape

    Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction

    Full text link
    The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can improve parking efficiency, help urban planning, and ultimately alleviate city congestion. However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e.g., camera, ultrasonic sensor, and GPS). To this end, we propose Semi-supervised Hierarchical Recurrent Graph Neural Network (SHARE) for predicting city-wide parking availability. Specifically, we first propose a hierarchical graph convolution structure to model non-Euclidean spatial autocorrelation among parking lots. Along this line, a contextual graph convolution block and a soft clustering graph convolution block are respectively proposed to capture local and global spatial dependencies between parking lots. Additionally, we adopt a recurrent neural network to incorporate dynamic temporal dependencies of parking lots. Moreover, we propose a parking availability approximation module to estimate missing real-time parking availabilities from both spatial and temporal domain. Finally, experiments on two real-world datasets demonstrate the prediction performance of SHARE outperforms seven state-of-the-art baselines.Comment: 8 pages, 9 figures, AAAI-202

    Frequency Enhanced Hybrid Attention Network for Sequential Recommendation

    Full text link
    The self-attention mechanism, which equips with a strong capability of modeling long-range dependencies, is one of the extensively used techniques in the sequential recommendation field. However, many recent studies represent that current self-attention based models are low-pass filters and are inadequate to capture high-frequency information. Furthermore, since the items in the user behaviors are intertwined with each other, these models are incomplete to distinguish the inherent periodicity obscured in the time domain. In this work, we shift the perspective to the frequency domain, and propose a novel Frequency Enhanced Hybrid Attention Network for Sequential Recommendation, namely FEARec. In this model, we firstly improve the original time domain self-attention in the frequency domain with a ramp structure to make both low-frequency and high-frequency information could be explicitly learned in our approach. Moreover, we additionally design a similar attention mechanism via auto-correlation in the frequency domain to capture the periodic characteristics and fuse the time and frequency level attention in a union model. Finally, both contrastive learning and frequency regularization are utilized to ensure that multiple views are aligned in both the time domain and frequency domain. Extensive experiments conducted on four widely used benchmark datasets demonstrate that the proposed model performs significantly better than the state-of-the-art approaches.Comment: 11 pages, 7 figures, The 46th International ACM SIGIR Conference on Research and Development in Information Retrieva

    Disentangled Causal Graph Learning forOnline Unsupervised Root Cause Analysis

    Full text link
    The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault. In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework

    Quaternion-Based Graph Convolution Network for Recommendation

    Full text link
    Graph Convolution Network (GCN) has been widely applied in recommender systems for its representation learning capability on user and item embeddings. However, GCN is vulnerable to noisy and incomplete graphs, which are common in real world, due to its recursive message propagation mechanism. In the literature, some work propose to remove the feature transformation during message propagation, but making it unable to effectively capture the graph structural features. Moreover, they model users and items in the Euclidean space, which has been demonstrated to have high distortion when modeling complex graphs, further degrading the capability to capture the graph structural features and leading to sub-optimal performance. To this end, in this paper, we propose a simple yet effective Quaternion-based Graph Convolution Network (QGCN) recommendation model. In the proposed model, we utilize the hyper-complex Quaternion space to learn user and item representations and feature transformation to improve both performance and robustness. Specifically, we first embed all users and items into the Quaternion space. Then, we introduce the quaternion embedding propagation layers with quaternion feature transformation to perform message propagation. Finally, we combine the embeddings generated at each layer with the mean pooling strategy to obtain the final embeddings for recommendation. Extensive experiments on three public benchmark datasets demonstrate that our proposed QGCN model outperforms baseline methods by a large margin.Comment: 13 pages, 7 figures, 6 tables. Submitted to ICDE 202

    Meta-optimized Contrastive Learning for Sequential Recommendation

    Full text link
    Contrastive Learning (CL) performances as a rising approach to address the challenge of sparse and noisy recommendation data. Although having achieved promising results, most existing CL methods only perform either hand-crafted data or model augmentation for generating contrastive pairs to find a proper augmentation operation for different datasets, which makes the model hard to generalize. Additionally, since insufficient input data may lead the encoder to learn collapsed embeddings, these CL methods expect a relatively large number of training data (e.g., large batch size or memory bank) to contrast. However, not all contrastive pairs are always informative and discriminative enough for the training processing. Therefore, a more general CL-based recommendation model called Meta-optimized Contrastive Learning for sequential Recommendation (MCLRec) is proposed in this work. By applying both data augmentation and learnable model augmentation operations, this work innovates the standard CL framework by contrasting data and model augmented views for adaptively capturing the informative features hidden in stochastic data augmentation. Moreover, MCLRec utilizes a meta-learning manner to guide the updating of the model augmenters, which helps to improve the quality of contrastive pairs without enlarging the amount of input data. Finally, a contrastive regularization term is considered to encourage the augmentation model to generate more informative augmented views and avoid too similar contrastive pairs within the meta updating. The experimental results on commonly used datasets validate the effectiveness of MCLRec.Comment: 11 Pages,8 figure
    corecore