43 research outputs found

    IgG4 autoantibodies are inhibitory in the autoimmune disease bullous pemphigoid

    Get PDF
    The IgG4 subclass of antibodies exhibits unique characteristics that suggest it may function in an immunoregulatory capacity. The inhibitory function of IgG4 has been well documented in allergic disease by the demonstration of IgG4 blocking antibodies, but similar functions have not been explored in autoimmune disease. Bullous pemphigoid (BP) is a subepidermal autoimmune blistering disease characterized by autoantibodies directed against BP180 and an inflammatory infiltrate including eosinophils and neutrophils. Animal models have revealed that the NC16A region within BP180 harbors the critical epitopes necessary for autoantibody mediated disease induction. BP180 NC16A-specific IgG belong to the IgG1, IgG3, and IgG4 subclasses. The purpose of this study was to determine effector functions of different IgG subclasses of NC16A-specific autoantibodies in BP. We find that IgG4 anti-NC16A autoantibodies inhibit the binding of IgG1 and IgG3 autoantibodies to the NC16A region. Moreover, IgG4 anti-NC16A blocks IgG1 and IgG3 induced complement fixation, neutrophil infiltration, and blister formation clinically and histologically in a dose-dependent manner following passive transfer to humanized BP180-NC16A mice. These findings highlight the inhibitory role of IgG4 in autoimmune disease and have important implications for the treatment of BP as well as other antibody mediated inflammatory and autoimmune diseases

    Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders

    Get PDF
    AbstractThe Yb:Lu2O3 precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent. The 5 at% Yb:Lu2O3 powder is in the cubic phase after calcination at 1100 °C for 4 h. The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm, respectively. The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm. The 1.0 mm-thick sample has an in-line transmittance of 81.6% (theoretical value of 82.2%) at 1100 nm. The largest absorption cross-section at 976 nm is 0.96×10−20 cm2 with the emission cross-section at 1033 nm of 0.92×10−20 cm2 and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059. The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave (QCW) pumping. In the case of continuous wave (CW) pumping, the highest slope efficiency is 61.0% with the optical efficiency of 54.1%. The obtained laser performance indicates that Yb:Lu2O3 ceramics have excellent resistance to thermal load stresses, which shows great potential in high-power solid-state laser applications

    DRAGON IN THE CLOUD, SOARING FORWARD*-East Nanyang Station Cultural Architectural Design Expression

    No full text
    As a city's transportation gateway, the high-speed rail station is also a business card for displaying and disseminating urban culture. The thesis takes the design process of East Nanyang Station, the largest single-line side station building in China as an example, elaborates the design concept of extracting "dragon in the cloud, soaring forward" as the creative design concept, and discusses the station building from three aspects: the overall plan of the station building, spatial form and spatial details cultural design expression

    Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant

    No full text
    The application of trimellitate (TMT) in the lubricating oil industry was seriously restricted because of its low viscosity index. In the work reported here, polycaprolactone (PCL) soft chain was embedded into the structure of TMT in order to improve the viscosity index. Characterization of the polymers was done by proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). Results supported our design and were consistent with the target product structure. Performance of the prepared materials was evaluated by standard ASTM methods. Noticeably, the viscosity index of the modified TMT increased from 8 to above 100, which greatly improved its viscosity-temperature performance. As the initiator, tetrabutyl titanate (TBT) can not only complete the ring-opening polymerization of caprolactam (ε-CL) at room temperature, but also generate nano-TiO2 by-products with excellent anti-wear properties during the synthesis. Characterization of the nano-TiO2 was done by scanning electron microscopy (SEM), FT-IR, TG and X-ray diffractometry (XRD). The friction and wear tests were conducted on a four-ball friction tester and the surface morphologies of worn surfaces were investigated by SEM. The experimental results clearly showed that the modified TMT showed better viscosity index and thermal stability as compared to the unmodified one. The modified nano-TMT base oil features excellent lubricant performance with good viscosity–temperature properties, thermal stability and anti-wear properties

    The Role of Iodine Catalyst in the Synthesis of 22-Carbon Tricarboxylic Acid and Its Ester: A Case Study

    No full text
    Here, 22-carbon tricarboxylic acid (C22TA) and its ester (C22TAE) were prepared via the Diels–Alder reaction of polyunsaturated fatty acids (PUFAs) and their esters (PUFAEs) as dienes with fumaric acid (FA) and dimethyl fumarate (DF) as dienophiles, respectively. The role of an iodine catalyst for the synthesis of C22TA and C22TAE in the Diels–Alder type reaction was investigated using a spectroscopic approach. The chemical structures of the products were characterized using proton nuclear magnetic resonance (1H-NMR) and electrospray ionization mass spectrometry (ESI-MS) analysis. Results showed that nonconjugated dienes can react with dienophiles through a Diels–Alder reaction with an iodine catalyst, and that iodine transformed the nonconjugated double bonds of dienes into conjugated double bonds via a radical process. DF was more favorable for the Diels–Alder reaction than FA. This was mainly because the dienophile DF contained an electron-withdrawing substituent, which reduced the highest and lowest occupied molecular orbital (HOMO–LUMO) energy gap and accelerated the Diels–Alder reaction. By transforming nonconjugated double bonds into conjugated double bonds, iodine as a Lewis acid increased the electron-withdrawing effect of the carbonyl group on the carbon–carbon double bond and reduced the energy difference between the HOMO of diene and the LUMO of dienophile, thus facilitating the Diels–Alder reaction

    Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study

    No full text
    Biomass-derived porous carbon materials have drawn considerable attention due to their natural abundance and low cost. In this work, nitrogen-doped porous carbons with high nitrogen content and large surface areas were designed and prepared from cottonseed hull and cattail. The two plant-based biomass compositions are similar, but the structures are very different, generating distinctly different property and performance of the prepared carbon materials. NRPC-112 has good electrochemical properties, while CN800 has good adsorption properties. By comparing the microstructure differences between the two starting materials, it was found that the structure of the raw materials would significantly affect the properties and performance of the materials. The work provided an important theoretical basis and reference for the selection of bio-resources for preparing carbon material. It is also important for choosing the appropriate synthesis method, process optimization, and application scenarios

    Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index

    No full text
    Under the strong influence of climate change and human activities, the frequency and intensity of disturbance events in the forest ecosystem both show significant increasing trends. Pine wood nematode (Bursapherenchus xylophilus, PWN) is one of the major alien invasive species in China, which has rapidly infected the forest and spread. In recent years, its tendency has been to spread from south to north, causing serious losses to Pinus and non-Pinus coniferous forests. It is urgent to carry out remote sensing monitoring and prediction of pine wilt disease (PWD). Taking Anhui Province as the study area, we applied ground survey, satellite-borne optical remote sensing imagery and environmental factor statistics, relying on the Google Earth Engine (GEE) platform to build a new vegetation index NDFI based on time-series Landsat images to extract coniferous forest information and used a random forest classification algorithm to build a monitoring model of the PWD infection stage. The results show that the proposed NDFI differentiation threshold classification method can accurately extract the coniferous forest range, with the overall accuracy of 87.75%. The overall accuracy of the PWD monitoring model based on random forest classification reaches 81.67%, and the kappa coefficient is 0.622. High temperature and low humidity are conducive to the survival of PWN, which aggravates the occurrence of PWD. Under the background of global warming, the degree of PWD in Anhui Province has gradually increased, and has transferred from the southwest and south to the middle and northeast. Our results show that PWD monitoring and prediction at a regional scale can be realized by using long time-series multi-source remote sensing data, NDFI index can accurately extract coniferous forest information and grasp disease information in a timely manner, which is crucial for effective monitoring and control of PWD
    corecore