26 research outputs found

    Diffusion Denoising Process for Perceptron Bias in Out-of-distribution Detection

    Full text link
    Out-of-distribution (OOD) detection is an important task to ensure the reliability and safety of deep learning and the discriminator models outperform others for now. However, the feature extraction of the discriminator models must compress the data and lose certain information, leaving room for bad cases and malicious attacks. In this paper, we provide a new assumption that the discriminator models are more sensitive to some subareas of the input space and such perceptron bias causes bad cases and overconfidence areas. Under this assumption, we design new detection methods and indicator scores. For detection methods, we introduce diffusion models (DMs) into OOD detection. We find that the diffusion denoising process (DDP) of DMs also functions as a novel form of asymmetric interpolation, which is suitable to enhance the input and reduce the overconfidence areas. For indicator scores, we find that the features of the discriminator models of OOD inputs occur sharp changes under DDP and use the norm of this dynamic change as our indicator scores. Therefore, we develop a new framework to combine the discriminator and generation models to do OOD detection under our new assumption. The discriminator models provide proper detection spaces and the generation models reduce the overconfidence problem. According to our experiments on CIFAR10 and CIFAR100, our methods get competitive results with state-of-the-art methods. Our implementation is available at https://github.com/luping-liu/DiffOOD

    Chat-3D v2: Bridging 3D Scene and Large Language Models with Object Identifiers

    Full text link
    Recent research has evidenced the significant potentials of Large Language Models (LLMs) in handling challenging tasks within 3D scenes. However, current models are constrained to addressing object-centric tasks, where each question-answer pair focuses solely on an individual object. In real-world applications, users may pose queries involving multiple objects or expect for answers that precisely reference various objects. We introduce the use of object identifiers to freely reference objects during a conversation. While this solution appears straightforward, it presents two main challenges: 1) How to establish a reliable one-to-one correspondence between each object and its identifier? 2) How to incorporate complex spatial relationships among dozens of objects into the embedding space of the LLM? To address these challenges, we propose a two-stage alignment method, which involves learning an attribute-aware token and a relation-aware token for each object. These tokens capture the object's attributes and spatial relationships with surrounding objects in the 3D scene. Once the alignment is established, we can fine-tune our model on various downstream tasks using instruction tuning. Experiments conducted on traditional datasets like ScanQA, ScanRefer, and Nr3D/Sr3D showcase the effectiveness of our proposed method. Additionally, we create a 3D scene captioning dataset annotated with rich object identifiers, with the assistant of GPT-4. This dataset aims to further explore the capability of object identifiers in effective object referencing and precise scene understanding

    AV-TranSpeech: Audio-Visual Robust Speech-to-Speech Translation

    Full text link
    Direct speech-to-speech translation (S2ST) aims to convert speech from one language into another, and has demonstrated significant progress to date. Despite the recent success, current S2ST models still suffer from distinct degradation in noisy environments and fail to translate visual speech (i.e., the movement of lips and teeth). In this work, we present AV-TranSpeech, the first audio-visual speech-to-speech (AV-S2ST) translation model without relying on intermediate text. AV-TranSpeech complements the audio stream with visual information to promote system robustness and opens up a host of practical applications: dictation or dubbing archival films. To mitigate the data scarcity with limited parallel AV-S2ST data, we 1) explore self-supervised pre-training with unlabeled audio-visual data to learn contextual representation, and 2) introduce cross-modal distillation with S2ST models trained on the audio-only corpus to further reduce the requirements of visual data. Experimental results on two language pairs demonstrate that AV-TranSpeech outperforms audio-only models under all settings regardless of the type of noise. With low-resource audio-visual data (10h, 30h), cross-modal distillation yields an improvement of 7.6 BLEU on average compared with baselines. Audio samples are available at https://AV-TranSpeech.github.ioComment: Accepted to ACL 202

    Connecting Multi-modal Contrastive Representations

    Full text link
    Multi-modal Contrastive Representation learning aims to encode different modalities into a semantically aligned shared space. This paradigm shows remarkable generalization ability on numerous downstream tasks across various modalities. However, the reliance on massive high-quality data pairs limits its further development on more modalities. This paper proposes a novel training-efficient method for learning MCR without paired data called Connecting Multi-modal Contrastive Representations (C-MCR). Specifically, given two existing MCRs pre-trained on (A, B) and (B, C) modality pairs, we project them to a new space and use the data from the overlapping modality B to aligning the two MCRs in the new space. Meanwhile, since the modality pairs (A, B) and (B, C) are already aligned within each MCR, the connection learned by overlapping modality can also be transferred to non-overlapping modality pair (A, C). To unleash the potential of C-MCR, we further introduce a semantic-enhanced inter- and intra-MCR connection method. We first enhance the semantic consistency and completion of embeddings across different modalities for more robust alignment. Then we utilize the inter-MCR alignment to establish the connection, and employ the intra-MCR alignment to better maintain the connection for inputs from non-overlapping modalities. To demonstrate the effectiveness of C-MCR, we connect CLIP and CLAP via texts to derive audio-visual representations, and integrate CLIP and ULIP via images for 3D-language representations. Remarkably, without using any paired data, C-MCR for audio-visual achieves state-of-the-art performance on audio-image retrieval, audio-visual source localization, and counterfactual audio-image recognition tasks. Furthermore, C-MCR for 3D-language also attains advanced zero-shot 3D point cloud classification accuracy on ModelNet40.Comment: NeurIPS 202

    The roads one must walk down: Commute and depression for Beijing’s residents

    No full text
    10.1016/j.trd.2022.103316Transportation Research Part D: Transport and Environment109103316-10331

    Home-made blues: Residential crowding and mental health in Beijing, China

    No full text
    10.1177/00420980221101707Urban Studies004209802211017-00420980221101

    Active microfluidic mixer chip

    No full text
    We report the design and fabrication of a chaotic mixer based on the electrorheological (ER) fluid-controlled valves. The flow in the main channel is perturbed by liquid flow in orthogonal side channels, driven by hydrodynamic pulsating pumps. Each pulsating pump consists of a chamber with diaphragm plus two out-of-phase ER valves operating in a push-pull mode. All the valves, pumps, and mixing channels are integrated in one polydimethylsioxane chip. Mixing characteristics in the main channel are controlled by the strength and frequency of external electric fields applied on the ER fluid.<br/

    Electrorheological fluid-actuated flexible platform

    No full text
    The design, fabrication, and performance of an electrorheological (ER) fluid-actuated flexible platform integrated on a microfluidic chip are reported in this letter. The digitally regulated ER microvalves control the four diaphragms on which a platform is sustained. With electrical input signals, the platform can perform vibrations at tunable frequencies as well as generate complex leveling modes. The flexible platform can potentially act as a microdamper when its inputs are generated from a sensor, in combination with a feedback control system.<br/

    “Standard Text” Relational Classification Model Based on Concatenated Word Vector Attention and Feature Concatenation

    No full text
    The task of relation classification is an important pre-task in natural language processing tasks. Relation classification can provide a high-quality corpus for tasks such as machine translation, human–computer dialogue, and structured text generation. In the process of the digitalization of standards, identifying the entity relationship in the standard text is an important prerequisite for the formation of subsequent standard knowledge. Only by accurately labeling the relationship between entities can there be higher efficiency and accuracy in the subsequent formation of knowledge bases and knowledge maps. This study proposes a standard text relational classification model based on cascaded word vector attention and feature splicing. The model was compared and ablated on our labeled standard text Chinese dataset. At the same time, in order to prove the performance of the model, the above experiments were carried out on two general English datasets, SemEval-2010 Task 8 and KBP37. On standard text datasets and general datasets, the model proposed in this study achieved excellent results
    corecore