134 research outputs found

    Length Effects of a Built-in Flapping Flat Plate on the Flow Over a Traveling Wavy Foil

    Get PDF
    Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time Lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated, body and tail force competing and tail force dominated modes) have been identified that are associated with different hydrodynamics and flow structures. It is revealed that there exists a better performance plate length region and, within this region, a high propeller efficiency (close to its maximum value) is achieved due to a great increase in propulsive force at a cost of a slight increase in energy consumption. Furthermore, a weak stabilizing effect on locomotion movement is indicated by the slight decrease in the root-mean-square (rms) values of drag and lateral forces. © 2014 American Physical Society

    Flow Over a Traveling Wavy Foil With a Passively Flapping Flat Plate

    Get PDF
    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature. © 2012 American Physical Society

    A deformable plate interacting with a non-Newtonian fluid in three dimensions

    Get PDF
    We consider a deformable plate interacting with a non-Newtonian fluid flow in three dimensions as a simple model problem for fluid-structure-interaction phenomena in life sciences (e.g., red blood cell interacting with blood flow). A power-law function is used for the constitutive equation of the non-Newtonian fluid. The lattice Boltzmann equation (the D3Q19 model) is used for modeling the fluid flow. The immersed boundary (IB) method is used for modeling the flexible plate and handling the fluid-plate interaction. The plate drag and its scaling are studied; the influences of three dimensionless parameters (power-law exponent, bending modulus, and generalized Reynolds number) are investigated

    Ginkgolide B Reduces Atherogenesis and Vascular Inflammation in ApoE−/− Mice

    Get PDF
    To investigate whether ginkgolide B (a platelet-activating factor inhibitor) affects vascular inflammation in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice.Human platelets were used to evaluate the effects of ginkgolide B on platelet aggregation and signal transduction. Ginkgolide B attenuated platelet aggregation and inhibited phosphatidylinositol 3 kinase (PI3K) activation and Akt phosphorylation in thrombin- and collagen-activated platelets. ApoE(-/-) mice were administered a high-cholesterol diet for 8 weeks. Plasma platelet factor 4 (PF4) and RANTES (regulated upon activation, normal T-cell expressed, and secreted protein) were then measured using an enzyme-linked immunosorbent assay. Scanning electron microscopy and immunohistochemistry were used to determine atherosclerotic lesions. Ginkgolide B decreased plasma PF4 and RANTES levels in ApoE(-/-) mice. Scanning electron microscopic examination showed that ginkgolide B reduced aortic plaque in ApoE(-/-) mice. Immunohistochemistry analysis demonstrated that ginkgolide B diminished P-selectin, PF4, RANTES, and CD40L expression in aortic plaque in ApoE(-/-) mice. Moreover, ginkgolide B suppressed macrophage and vascular cell adhesion protein 1 (VCAM-1) expression in aorta lesions in ApoE(-/-) mice. Similar effects were observed in aspirin-treated ApoE(-/-) mice.Ginkgolide B significantly reduced atherosclerotic lesions and P-selectin, PF4, RANTES, and CD40L expression in aortic plaque in ApoE-/- mice. The efficacy of ginkgolide B was similar to aspirin. These results provide direct evidence that ginkgolide B inhibits atherosclerosis, which may be associated with inhibition of the PI3K/Akt pathway in activated platelets

    Function and regulation of ubiquitin-like SUMO system in heart

    Get PDF
    The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies

    Suppression of hesA mutation on nitrogenase activity in Paenibacillus polymyxa WLY78 with the addition of high levels of molybdate or cystine

    Get PDF
    The diazotrophic Paenibacillus polymyxa WLY78 possesses a minimal nitrogen fixation gene cluster consisting of nine genes (nifB nifH nifD nifK nifE nifN nifX hesA and nifV). Notably, the hesA gene contained within the nif gene cluster is also found within nif gene clusters among diazotrophic cyanobacteria and Frankia. The predicted product HesA is a member of the ThiF-MoeB-HesA family containing an N-terminal nucleotide binding domain and a C-terminal MoeZ/MoeB-like domain. However, the function of hesA gene in nitrogen fixation is unknown. In this study, we demonstrate that the hesA mutation of P. polymyxa WLY78 leads to nearly complete loss of nitrogenase activity. The effect of the mutation can be partially suppressed by the addition of high levels of molybdate or cystine. However, the nitrogenase activity of the hesA mutant could not be restored by Klebsiella oxytoca nifQ or Escherichia coli moeB completely. In addition, the hesA mutation does not affect nitrate reductase activity of P. polymyxa WLY78. Our results demonstrate hesA is a novel gene specially required for nitrogen fixation and its role is related to introduction of S and Mo into the FeMo-co of nitrogenase

    Serum Helicobacter pylori NapA antibody as a potential biomarker for gastric cancer

    Get PDF
    Helicobacter pylori (H. pylori) infection is strongly associated with gastric cancer. However, only a minority of infected individuals ever develop gastric cancer. This risk stratification may be in part due to differences among strains. The relationship between neutrophil-activating protein (NapA) and gastric cancer is unclear. The purpose of this study is to evaluate the significance of NapA as a biomarker in gastric cancer. We used enzyme linked immunosorbent assay (ELISA) to determine the status of H. pylori infection. Indirect ELISA method was used for detection of NapA antibody titer in the serum of H. pyloriinfected individuals. Unconditional logistic regressions were adopted to analyze the variables and determine the association of NapA and gastric cancer. The results of study indicated serum H. pylori NapA antibody level were associated with a reduced risk for development of gastric cancer. It may be used in conjugation with other indicators for gastric cancer detection
    • …
    corecore