62 research outputs found

    Exploiting Sentence Embedding for Medical Question Answering

    Full text link
    Despite the great success of word embedding, sentence embedding remains a not-well-solved problem. In this paper, we present a supervised learning framework to exploit sentence embedding for the medical question answering task. The learning framework consists of two main parts: 1) a sentence embedding producing module, and 2) a scoring module. The former is developed with contextual self-attention and multi-scale techniques to encode a sentence into an embedding tensor. This module is shortly called Contextual self-Attention Multi-scale Sentence Embedding (CAMSE). The latter employs two scoring strategies: Semantic Matching Scoring (SMS) and Semantic Association Scoring (SAS). SMS measures similarity while SAS captures association between sentence pairs: a medical question concatenated with a candidate choice, and a piece of corresponding supportive evidence. The proposed framework is examined by two Medical Question Answering(MedicalQA) datasets which are collected from real-world applications: medical exam and clinical diagnosis based on electronic medical records (EMR). The comparison results show that our proposed framework achieved significant improvements compared to competitive baseline approaches. Additionally, a series of controlled experiments are also conducted to illustrate that the multi-scale strategy and the contextual self-attention layer play important roles for producing effective sentence embedding, and the two kinds of scoring strategies are highly complementary to each other for question answering problems.Comment: 8 page

    How can Deep Learning Retrieve the Write-Missing Additional Diagnosis from Chinese Electronic Medical Record For DRG

    Full text link
    The purpose of write-missing diagnosis detection is to find diseases that have been clearly diagnosed from medical records but are missed in the discharge diagnosis. Unlike the definition of missed diagnosis, the write-missing diagnosis is clearly manifested in the medical record without further reasoning. The write-missing diagnosis is a common problem, often caused by physician negligence. The write-missing diagnosis will result in an incomplete diagnosis of medical records. While under DRG grouping, the write-missing diagnoses will miss important additional diagnoses (CC, MCC), thus affecting the correct rate of DRG enrollment. Under the circumstance that countries generally start to adopt DRG enrollment and payment, the problem of write-missing diagnosis is a common and serious problem. The current manual-based method is expensive due to the complex content of the full medical record. We think this problem is suitable to be solved as natural language processing. But to the best of our knowledge, no researchers have conducted research on this problem based on natural language processing methods. We propose a framework for solving the problem of write-missing diagnosis, which mainly includes three modules: disease recall module, disease context logic judgment module, and disease relationship comparison module. Through this framework, we verify that the problem of write-missing diagnosis can be solved well, and the results are interpretable. At the same time, we propose advanced solutions for the disease context logic judgment module and disease relationship comparison module, which have obvious advantages compared with the mainstream methods of the same type of problems. Finally, we verified the value of our proposed framework under DRG medical insurance payment in a tertiary hospital

    Exploring semantic information in disease: Simple Data Augmentation Techniques for Chinese Disease Normalization

    Full text link
    The disease is a core concept in the medical field, and the task of normalizing disease names is the basis of all disease-related tasks. However, due to the multi-axis and multi-grain nature of disease names, incorrect information is often injected and harms the performance when using general text data augmentation techniques. To address the above problem, we propose a set of data augmentation techniques that work together as an augmented training task for disease normalization. Our data augmentation methods are based on both the clinical disease corpus and standard disease corpus derived from ICD-10 coding. Extensive experiments are conducted to show the effectiveness of our proposed methods. The results demonstrate that our methods can have up to 3\% performance gain compared to non-augmented counterparts, and they can work even better on smaller datasets

    Experimental studies of the acoustic wave field near a borehole

    Get PDF
    A monopole or a dipole source in a fluid borehole generates acoustic waves, part of which propagate along the borehole and the other part enter the formation propagating as P- or S-waves. The refracted waves propagating along the borehole wall are used to determine P- and S-wave velocities. However, a significant fraction of the seismic energy radiates into the formation. In this laboratory study, we measure the acoustic waves in the borehole and the seismic waves in the formation at different distances from the borehole. We use scaled borehole models made of Lucite and of concrete to simulate a soft and a hard formation, respectively. The waveforms are measured in the boreholes as well as in the formations with different radial distances from the axis of the borehole. The results show that the investigation depth of the wave measured in the borehole is less than one half of the wavelength. The seismic energy radiating into the formation and scattered from interfaces and heterogeneities can be used for imaging the formation.Massachusetts Institute of Technology. Earth Resources Laboratory (Founding Member Consortium

    THiFLY Research at SemEval-2023 Task 7: A Multi-granularity System for CTR-based Textual Entailment and Evidence Retrieval

    Full text link
    The NLI4CT task aims to entail hypotheses based on Clinical Trial Reports (CTRs) and retrieve the corresponding evidence supporting the justification. This task poses a significant challenge, as verifying hypotheses in the NLI4CT task requires the integration of multiple pieces of evidence from one or two CTR(s) and the application of diverse levels of reasoning, including textual and numerical. To address these problems, we present a multi-granularity system for CTR-based textual entailment and evidence retrieval in this paper. Specifically, we construct a Multi-granularity Inference Network (MGNet) that exploits sentence-level and token-level encoding to handle both textual entailment and evidence retrieval tasks. Moreover, we enhance the numerical inference capability of the system by leveraging a T5-based model, SciFive, which is pre-trained on the medical corpus. Model ensembling and a joint inference method are further utilized in the system to increase the stability and consistency of inference. The system achieves f1-scores of 0.856 and 0.853 on textual entailment and evidence retrieval tasks, resulting in the best performance on both subtasks. The experimental results corroborate the effectiveness of our proposed method. Our code is publicly available at https://github.com/THUMLP/NLI4CT.Comment: Accepted by SemEval202

    Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction

    Get PDF
    Electronic coupling with the support plays a crucial role in boosting the intrinsic catalytic activity of a single-atom catalyst. Herein, the three-dimensional (3D) hierarchical Co(OH)F nanosheet arrays modified by singleatom Ru (SA-Ru/Co(OH)F) are prepared by a facile one-step hydrothermal method under mild conditions, which exhibit excellent activity with an overpotential of 200 and 326 mV at 10 and 500 mA cm(-2), respectively, as well as robust stability for oxygen evolution reaction (OER) in 1.0 mol L-1 KOH electrolyte. The study of electronic structures and surface chemical states before and after OER testing reveals that the strong electronic coupling between single-atom Ru and Co(OH)F induces the charge redistribution in SA-Ru/Co(OH)F and suppresses the excessive oxidation of Ru into higher valence state (more than +4) under high OER potential. This work provides a strategy to stabilize single-atom Ru by Co(OH)F that can enhance the activity and durability for OER under large current densities

    Exploring the Dominant Role of Atomic- and Nano-Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media

    Get PDF
    Ru nanoparticles (NPs) and single atoms (SAs)-based materials have been investigated as alternative electrocatalysts to Pt/C for hydrogen evolution reaction (HER). Exploring the dominant role of atomic- and nano-ruthenium as active sites in acidic and alkaline media is very necessary for optimizing the performance. Herein, an electrocatalyst containing both Ru SAs and NPs anchored on defective carbon (RuSA+NP/DC) has been synthesized via a Ru-alginate metal-organic supramolecules conversion method. RuSA+NP/DC exhibits low overpotentials of 16.6 and 18.8 mV at 10 mA cm(-2) in acidic and alkaline electrolytes, respectively. Notably, its mass activities are dramatically improved, which are about 1.1 and 2.4 times those of Pt/C at an overpotential of 50 mV in acidic and alkaline media, respectively. Theoretical calculations reveal that Ru SAs own the most appropriate H* adsorption strength and thus, plays a dominant role for HER in acid electrolyte, while Ru NPs facilitate the dissociation of H2O that is the rate-determining step in alkaline electrolyte, leading to a remarkable HER activity
    corecore