4,017 research outputs found

    Novel Compact Three-Way Filtering Power Divider Using Net-Type Resonators

    Get PDF
    In this paper, we present a novel compact three-way power divider with bandpass responses. The proposed power divider utilizes folded net-type resonators to realize dual functions of filtering and power splitting as well as compact size. Equal power ratio with low magnitude imbalance is achieved due to the highly symmetric structure. For demonstration, an experimental three way filtering power divider is implemented. Good filtering and power division characteristics are observed in the measured results of the circuit. The area of the circuits is 14.5 mm x 21.9 mm or 0.16 λg x 0.24 λg, where the λg is the guide wavelength of the center frequency at 2.1 GHz

    Triggered massive and clustered stars formation by together H II regions G38.91-0.44 and G39.30-1.04

    Full text link
    We present the radio continuum, infrared, and CO molecular observations of infrared dark cloud (IRDC) G38.95-0.47 and its adjacent H II regions G38.91-0.44 (N74), G38.93-0.39 (N75), and G39.30-1.04. The Purple Mountain Observation (PMO) 13.7 m radio telescope was used to detect12CO J=1-0,13CO J=1-0 and C18O J=1-0 lines. The carbon monoxide (CO) molecular observations can ensure the real association between the ionized gas and the neutral material observed nearby. To select young stellar objects (YSOs) associated this region, we used the GLIMPSE I catalog. The13CO J=1-0 emission presents two large cloud clumps. The clump consistent with IRDC G38.95-0.47 shows a triangle- like shape, and has a steep integrated-intensity gradient toward H II regions G38.91-0.44 and G39.30-1.04, suggesting that the two H II regions have expanded into the IRDC. Four submillmeter continuum sources have been detected in the IRDC G38.95-0.47. Only the G038.95-00.47-M1 source with a mass of 117 Msun has outflow and infall motions, indicating a newly forming massive star. We detected a new collimated outflow in the clump compressed by G38.93-0.39. The derived ages of the three H II regions are 6.1*10^5yr, 2.5*10^5yr, and 9.0*10^5yr, respectively. In the IRDC G38.95-0.47, the significant enhancement of several Class I YSOs indicates the presence of some recently formed stars. Comparing the ages of these H II regions with YSOs (Class I sources and massive G038.95-00.47-M1 source), we suggest that YSOs may be triggered by G38.91-0.44 and G39.30-1.04 together, which supports the radiatively driven implosion model. It may be the first time that the triggered star formation has occurred in the IRDC compressed by two H II regions. The new detected outflow may be driven by a star cluster.Comment: 6 pages, 4 figures, Accepted for publication in A&
    • …
    corecore