372 research outputs found
The Comprehension of Humor in Indirect Speech Acts with Frame-shifting Theory
Being a common type of language behavior in human being’s society, humour plays an essential role in human life, especially in communication. If the hearer is lacking in linguistic competence, the transmission of information will be hindered, and the speaker’s meaning will be misinterpreted or twisted. Most of the humours are generated or produced by unsmooth information exchanged from the speaker, which is intentional or unintentional. Humour generation process is the process of proposing and creating a framework consciously, and then activating the elements associated with another framework and confirming the identified information through transferring to another frame. So that Frame-shifting Theory is very necessary when comprehending the process of humour generation. The writer lists some humours examples existing in Indirect Speech Acts in the paper, which focus on how the hearer comprehends the humour with the Frame-shifting Theory
Signed Distance-based Deep Memory Recommender
Personalized recommendation algorithms learn a user's preference for an item
by measuring a distance/similarity between them. However, some of the existing
recommendation models (e.g., matrix factorization) assume a linear relationship
between the user and item. This approach limits the capacity of recommender
systems, since the interactions between users and items in real-world
applications are much more complex than the linear relationship. To overcome
this limitation, in this paper, we design and propose a deep learning framework
called Signed Distance-based Deep Memory Recommender, which captures non-linear
relationships between users and items explicitly and implicitly, and work well
in both general recommendation task and shopping basket-based recommendation
task. Through an extensive empirical study on six real-world datasets in the
two recommendation tasks, our proposed approach achieved significant
improvement over ten state-of-the-art recommendation models
Discrete Factorization Machines for Fast Feature-based Recommendation
User and item features of side information are crucial for accurate
recommendation. However, the large number of feature dimensions, e.g., usually
larger than 10^7, results in expensive storage and computational cost. This
prohibits fast recommendation especially on mobile applications where the
computational resource is very limited. In this paper, we develop a generic
feature-based recommendation model, called Discrete Factorization Machine
(DFM), for fast and accurate recommendation. DFM binarizes the real-valued
model parameters (e.g., float32) of every feature embedding into binary codes
(e.g., boolean), and thus supports efficient storage and fast user-item score
computation. To avoid the severe quantization loss of the binarization, we
propose a convergent updating rule that resolves the challenging discrete
optimization of DFM. Through extensive experiments on two real-world datasets,
we show that 1) DFM consistently outperforms state-of-the-art binarized
recommendation models, and 2) DFM shows very competitive performance compared
to its real-valued version (FM), demonstrating the minimized quantization loss.
This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201
Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search
Mobile landmark search (MLS) recently receives increasing attention for its
great practical values. However, it still remains unsolved due to two important
challenges. One is high bandwidth consumption of query transmission, and the
other is the huge visual variations of query images sent from mobile devices.
In this paper, we propose a novel hashing scheme, named as canonical view based
discrete multi-modal hashing (CV-DMH), to handle these problems via a novel
three-stage learning procedure. First, a submodular function is designed to
measure visual representativeness and redundancy of a view set. With it,
canonical views, which capture key visual appearances of landmark with limited
redundancy, are efficiently discovered with an iterative mining strategy.
Second, multi-modal sparse coding is applied to transform visual features from
multiple modalities into an intermediate representation. It can robustly and
adaptively characterize visual contents of varied landmark images with certain
canonical views. Finally, compact binary codes are learned on intermediate
representation within a tailored discrete binary embedding model which
preserves visual relations of images measured with canonical views and removes
the involved noises. In this part, we develop a new augmented Lagrangian
multiplier (ALM) based optimization method to directly solve the discrete
binary codes. We can not only explicitly deal with the discrete constraint, but
also consider the bit-uncorrelated constraint and balance constraint together.
Experiments on real world landmark datasets demonstrate the superior
performance of CV-DMH over several state-of-the-art methods
KGAT: Knowledge Graph Attention Network for Recommendation
To provide more accurate, diverse, and explainable recommendation, it is
compulsory to go beyond modeling user-item interactions and take side
information into account. Traditional methods like factorization machine (FM)
cast it as a supervised learning problem, which assumes each interaction as an
independent instance with side information encoded. Due to the overlook of the
relations among instances or items (e.g., the director of a movie is also an
actor of another movie), these methods are insufficient to distill the
collaborative signal from the collective behaviors of users. In this work, we
investigate the utility of knowledge graph (KG), which breaks down the
independent interaction assumption by linking items with their attributes. We
argue that in such a hybrid structure of KG and user-item graph, high-order
relations --- which connect two items with one or multiple linked attributes
--- are an essential factor for successful recommendation. We propose a new
method named Knowledge Graph Attention Network (KGAT) which explicitly models
the high-order connectivities in KG in an end-to-end fashion. It recursively
propagates the embeddings from a node's neighbors (which can be users, items,
or attributes) to refine the node's embedding, and employs an attention
mechanism to discriminate the importance of the neighbors. Our KGAT is
conceptually advantageous to existing KG-based recommendation methods, which
either exploit high-order relations by extracting paths or implicitly modeling
them with regularization. Empirical results on three public benchmarks show
that KGAT significantly outperforms state-of-the-art methods like Neural FM and
RippleNet. Further studies verify the efficacy of embedding propagation for
high-order relation modeling and the interpretability benefits brought by the
attention mechanism.Comment: KDD 2019 research trac
Reflective Full Subcategories of the Category of L
This paper focuses on the relationship between L-posets and complete L-lattices from the categorical view. By considering a special class of fuzzy closure operators, we prove that the category of complete L-lattices is a reflective full subcategory of the category of L-posets with appropriate morphisms. Moreover, we characterize the Dedekind-MacNeille completions of L-posets and provide an equivalent description for them
Deep Item-based Collaborative Filtering for Top-N Recommendation
Item-based Collaborative Filtering(short for ICF) has been widely adopted in
recommender systems in industry, owing to its strength in user interest
modeling and ease in online personalization. By constructing a user's profile
with the items that the user has consumed, ICF recommends items that are
similar to the user's profile. With the prevalence of machine learning in
recent years, significant processes have been made for ICF by learning item
similarity (or representation) from data. Nevertheless, we argue that most
existing works have only considered linear and shallow relationship between
items, which are insufficient to capture the complicated decision-making
process of users.
In this work, we propose a more expressive ICF solution by accounting for the
nonlinear and higher-order relationship among items. Going beyond modeling only
the second-order interaction (e.g. similarity) between two items, we
additionally consider the interaction among all interacted item pairs by using
nonlinear neural networks. Through this way, we can effectively model the
higher-order relationship among items, capturing more complicated effects in
user decision-making. For example, it can differentiate which historical
itemsets in a user's profile are more important in affecting the user to make a
purchase decision on an item. We treat this solution as a deep variant of ICF,
thus term it as DeepICF. To justify our proposal, we perform empirical studies
on two public datasets from MovieLens and Pinterest. Extensive experiments
verify the highly positive effect of higher-order item interaction modeling
with nonlinear neural networks. Moreover, we demonstrate that by more
fine-grained second-order interaction modeling with attention network, the
performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI
Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO<sub>2</sub> in wheat
Increase in atmospheric CO(2) concentration ([CO(2)]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO(2) elevation (700 μmol l(−1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO(2)] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO(2)] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target
- …