43 research outputs found

    Addressing Action Oscillations through Learning Policy Inertia

    Full text link
    Deep reinforcement learning (DRL) algorithms have been demonstrated to be effective in a wide range of challenging decision making and control tasks. However, these methods typically suffer from severe action oscillations in particular in discrete action setting, which means that agents select different actions within consecutive steps even though states only slightly differ. This issue is often neglected since the policy is usually evaluated by its cumulative rewards only. Action oscillation strongly affects the user experience and can even cause serious potential security menace especially in real-world domains with the main concern of safety, such as autonomous driving. To this end, we introduce Policy Inertia Controller (PIC) which serves as a generic plug-in framework to off-the-shelf DRL algorithms, to enables adaptive trade-off between the optimality and smoothness of the learned policy in a formal way. We propose Nested Policy Iteration as a general training algorithm for PIC-augmented policy which ensures monotonically non-decreasing updates under some mild conditions. Further, we derive a practical DRL algorithm, namely Nested Soft Actor-Critic. Experiments on a collection of autonomous driving tasks and several Atari games suggest that our approach demonstrates substantial oscillation reduction in comparison to a range of commonly adopted baselines with almost no performance degradation.Comment: Accepted paper on AAAI 202

    MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning

    Full text link
    Most meta reinforcement learning (meta-RL) methods learn to adapt to new tasks by directly optimizing the parameters of policies over primitive action space. Such algorithms work well in tasks with relatively slight difference. However, when the task distribution becomes wider, it would be quite inefficient to directly learn such a meta-policy. In this paper, we propose a new meta-RL algorithm called Meta Goal-generation for Hierarchical RL (MGHRL). Instead of directly generating policies over primitive action space for new tasks, MGHRL learns to generate high-level meta strategies over subgoals given past experience and leaves the rest of how to achieve subgoals as independent RL subtasks. Our empirical results on several challenging simulated robotics environments show that our method enables more efficient and generalized meta-learning from past experience.Comment: Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL

    Efficient Deep Reinforcement Learning via Adaptive Policy Transfer

    Full text link
    Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between tasks or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.Comment: Accepted by IJCAI'202

    Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning

    Full text link
    Context, the embedding of previous collected trajectories, is a powerful construct for Meta-Reinforcement Learning (Meta-RL) algorithms. By conditioning on an effective context, Meta-RL policies can easily generalize to new tasks within a few adaptation steps. We argue that improving the quality of context involves answering two questions: 1. How to train a compact and sufficient encoder that can embed the task-specific information contained in prior trajectories? 2. How to collect informative trajectories of which the corresponding context reflects the specification of tasks? To this end, we propose a novel Meta-RL framework called CCM (Contrastive learning augmented Context-based Meta-RL). We first focus on the contrastive nature behind different tasks and leverage it to train a compact and sufficient context encoder. Further, we train a separate exploration policy and theoretically derive a new information-gain-based objective which aims to collect informative trajectories in a few steps. Empirically, we evaluate our approaches on common benchmarks as well as several complex sparse-reward environments. The experimental results show that CCM outperforms state-of-the-art algorithms by addressing previously mentioned problems respectively.Comment: Accepted to AAAI 202

    Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning

    Full text link
    Social psychology and real experiences show that cognitive consistency plays an important role to keep human society in order: if people have a more consistent cognition about their environments, they are more likely to achieve better cooperation. Meanwhile, only cognitive consistency within a neighborhood matters because humans only interact directly with their neighbors. Inspired by these observations, we take the first step to introduce \emph{neighborhood cognitive consistency} (NCC) into multi-agent reinforcement learning (MARL). Our NCC design is quite general and can be easily combined with existing MARL methods. As examples, we propose neighborhood cognition consistent deep Q-learning and Actor-Critic to facilitate large-scale multi-agent cooperations. Extensive experiments on several challenging tasks (i.e., packet routing, wifi configuration, and Google football player control) justify the superior performance of our methods compared with state-of-the-art MARL approaches.Comment: Accepted by AAAI2020 with oral presentation (https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Accepted-Paper-List.pdf). Since AAAI2020 has started, I have the right to distribute this paper on arXi
    corecore