14 research outputs found

    DHX36, BAX, and ARPC1B May Be Critical for the Diagnosis and Treatment of Tuberculosis

    No full text
    Background. Tuberculosis (TB) is usually caused by Mycobacterium tuberculosis, which has the highest mortality rate among infectious diseases. This study is designed to identify the key genes affecting the diagnosis and treatment of TB. Methods. GSE54992, which included 39 peripheral blood mononuclear cell (PBMC) samples, was extracted from the Gene Expression Omnibus database. After the samples were classified into type and time groups by limma package, the differentially expressed genes (DEGs) were analyzed using the Analysis of Variance. Using pheatmap package, hierarchical cluster analysis was performed for the DEGs. Then, the key modules correlated with TB were selected using the WGCNA package. Finally, functional and pathway enrichment analyses were carried out using clusterProfiler package. Results. The DEGs in subclusters 3, 6, 7, and 8 were chosen for further analyses. Based on WGCNA analysis, blue and green modules in type group and pink module in time group were selected as key modules. From the key modules, 9 (including BAX and ARPC1B) hub genes in type group and 6 (including DHX36) hub genes in time group were screened. Through pathway enrichment analysis, the TNF signaling pathway was enriched for the green module. Conclusion. DHX36, BAX, and ARPC1B might be key genes acting in the mechanisms of TB. Besides, the TNF signaling pathway might also be critical for the diagnosis and therapy of the disease

    Development of a prognostic nomogram for patients with malignant mesothelioma with bone metastasis

    No full text
    Abstract Malignant mesothelioma (MM) is a rare aggressive tumor, and bone metastasis often occurs in later stages of this disease. This study aimed to establish a nomogram to predict the prognosis of bone metastasis of patients with MM. Data from the Surveillance, Epidemiology, and End Results database were screened and retrieved. This study included 311 patients with MM with bone metastases. Prognostic factors were analyzed using the Kaplan–Meier method and Cox proportional hazards model. A nomogram for overall survival (OS) was established and evaluated using statistically significant prognostic factors, and cancer-specific survival (CSS) analysis was performed to investigate its prognostic factors. In addition, the metastasis patterns of patients with MM were investigated, and the effects of different sites of metastasis on survival were compared using the Kaplan–Meier method. Age, sex, histological type, and chemotherapy were identified as the independent risk factors for OS. The 1-, 2-, and 3-year areas under the curve of the nomogram were 0.792, 0.774, and 0.928, and 0.742, 0.733, and 0.733 in the training and validation sets, respectively. Compared to OS, histological type, radiotherapy, and chemotherapy were independent risk factors for CSS. Different metastatic sites in MM have significantly different effects on prognosis

    Data_Sheet_1_Genomic and clinical characterization of Klebsiella pneumoniae carrying the pks island.pdf

    No full text
    BackgroundThe pks island and its production of the bacterial secondary metabolite genotoxin, colibactin, have attracted increasing attention. However, genomic articles focusing on pks islands in Klebsiella pneumoniae, as well as comparative genomic studies of mobile genetic elements, such as prophages, plasmids, and insertion sequences, are lacking. In this study, a large-scale analysis was conducted to understand the prevalence and evolution of pks islands, differences in mobile genetic elements between pks-negative and pks-positive K. pneumoniae, and clinical characteristics of infection caused by pks-positive K. pneumoniae.MethodsThe genomes of 2,709 K. pneumoniae were downloaded from public databases, among which, 1,422 were from NCBI and 1,287 were from the China National GeneBank DataBase (CNGBdb). Screening for virulence and resistance genes, phylogenetic tree construction, and pan-genome analysis were performed. Differences in mobile genetic elements between pks-positive and pks-negative strains were compared. The clinical characteristics of 157 pks-positive and 157 pks-negative K. pneumoniae infected patients were investigated.ResultsOf 2,709 K. pneumoniae genomes, 245 pks-positive genomes were screened. The four siderophores, type VI secretion system, and nutritional factor genes were present in at least 77.9% (191/245), 66.9% (164/245), and 63.3% (155/245) of pks-positive strains, respectively. The number and fragment length of prophage were lower in pks-positive strains than in pks-negative strains (p ConclusionThe pks-positive strains had abundant virulence genes. There were differences in the distribution of mobile genetic elements between pks-positive and pks-negative isolates. Further analysis of the evolutionary pattern of pks island and epidemiological surveillance in different populations are needed.</p

    Large-Scale Genomic Epidemiology of <i>Klebsiella pneumoniae</i> Identified Clone Divergence with Hypervirulent Plus Antimicrobial-Resistant Characteristics Causing Within-Ward Strain Transmissions

    No full text
    Global dissemination of K. pneumoniae clones poses health hazards to the public. Genomic epidemiology studies with comprehensive data set further revealed clone divergence, showing a high complexity in evolution. Moreover, clones carrying both acquired virulent and antimicrobial-resistant genes emerged and might replace the carbapenem-resistant clones. Co-occurrence of virulence and resistance is emerging. An unbiased collection of 3,061 clinical K. pneumoniae isolates (January 5, 2013 to July 24, 2018) underwent whole-genome sequencing. Pairwise core-genome single-nucleotide polymorphism (cgSNP) distances identified clone divergence and transmission events. A sum of 2,193 nonduplicated genomes clustered into four phenotypically indistinguishable species complexes. 93% (n = 2,035) were KpI with its largest clonal group (CG) being CG11 (n = 406). Three hundred ninety-three were ST11 and three hundred seventy-four carried bla(KPC-2). Noticeably, CG11 is divided into two main subclones based on the capsule synthesis K loci (KL). CG11-KL64 showed a clear hypervirulent plus antimicrobial-resistant (hv+AMR) characteristic. Besides, the phylogenetic structure revealed the clone divergence of CG25, and this is the first report with sufficient CG25 genomes to identify the divergence. The outcomes of the hv+AMR CG25 cluster 1 affected patients were poorer (P < 0.05). Moreover, two episodes of strain transmissions were associated with CG25 cluster 1. Other transmissions were associated with ST20 and ST307. Genomic epidemiology identified clone divergence of CG11 and CG25. The hv+AMR subclones pose greater threats on a global scale. Nosocomial transmissions of the high-risk clones raised our concerns about the evolution and transmission of emerging clones among newborns and critically ill patients. IMPORTANCE The convergence of AMR and acquired virulence posing higher risks to the public is a focusing point. With sufficient genomes and genotypes, we successfully identify the convergence in two subclones, the previously reported CG11-KL64, and the newly reported CG25 cluster 1. The novel finding of the CG25 divergence was not only revealed by the phylogenetic tree but also confirmed by the clinical outcome data and the accessory genome patterns. Moreover, the transmission subclones circulated in two clinically important wards highlights the deficiency of infection control program using conventional methods. Without the assistance of whole-genome sequencing, the transmissions of high-risk clones could not be identified
    corecore