286 research outputs found

    Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade

    Get PDF
    In this study, a three-dimensional VAWT with a spanwise passively deformable flexible blade has been modelled. The study mainly focuses on the analysis of blade structure characteristics associated with the bending and twist deflection. Two types of flexible blade material and two strut locations supporting H-type blades are being investigated. The unsteady external loads and energy efficiency of VAWT with such designed flexible blade are also being analysed. The simulation results show that the bending and twist deflection peak is positively correlated with the turbine tip speed ratio λ. For a flexible blade, an unevenly distributed structural stress along the blade with a high stress regime in the vicinity of strut location has also been observed. Due to the rotational motion of a VAWT, the centrifugal force acting on VAWT blade plays an important role on the blade structure characteristics. Reduction of the blade stiffness results in an increase of the blade stress. Changing the strut location from middle to tip will cause a large area under high stress. The results also indicate that the VAWT with a highly flexible blade is not an efficient energy extraction device when it is compared to a less flexible or a rigid blade

    Passive flexibility effect on oscillating foil energy harvester

    Get PDF
    It is well-known that structural flexibility enhances the performance of flapping foil propellers. There is, however, much less knowledge about the effect of deformability on the flow energy extraction capacity of flapping foils. Following our recent work on an oscillating foil energy harvesting device with prescribed foil deformations1, we investigate the fully-coupled dynamics of a flapping foil energy harvester with a passively deformable foil. Towards this end, we computationally study the dynamics of a foil with realistic internal structure (containing a rigid leading edge and a flexible trailing edge with a stiffener) in energy harvesting regime through a fluid-structure interaction scheme. To examine the effect of different levels of flexibility, various materials (ranging from metals such as copper to virtual materials with arbitrary elasticity and density) for the stiffener have been tested. With the virtual materials, the effects of Young’s modulus coefficient and density ratio have been studied. Our simulation results show that flexibility around the trailing edge could enhance the overall energy extraction performance. For example, with a copper stiffener, an increase of 32.2% in efficiency can be reached at high reduced frequency. The performance enhancement is achieved mostly in cases with low Young’s modulus coefficient and density ratio. A possible underlying mechanism is that the specific foil deformations in these cases encourage the generation and shedding of vortices from the foil leading edge, which is known to be beneficial to flow energy extraction

    A case study on tandem configured oscillating foils in shallow water

    Get PDF
    Previous research on the oscillating-foil turbine system has demonstrated its great potential for energy extraction. However, not much is known about the interaction of this device with its working environment. To determine the performance and environmental impact of an oscillating-foil turbine in shallow water, a case study have been conducted which was made of the dual oscillating energy extraction foils system with a tandem configuration which operates at two different water depths: i.e., D = 5c and D = 10c. The performance and the environmental effects of the device were compared between shallow-water and deep-water cases. The results show a 10% efficiency loss in the D = 5c case compared with that of the deep water case, because of the interaction between the oscillating-foils and the seabed. It is also observed that the foil vortices dissipation rate of the D = 5c case is 13% less than that of the deep-water case due to the free-surface effect. The water level also rises 23% around the oscillating-foils location of the D = 5c case because of the blockage effect of the device

    Sense: Model Hardware Co-design for Accelerating Sparse CNN on Systolic Array

    Full text link
    Sparsity is an intrinsic property of convolutional neural network(CNN) and worth exploiting for CNN accelerators, but extra processing comes with hardware overhead, causing many architectures suffering from only minor profit. Meanwhile, systolic array has been increasingly competitive on CNNs acceleration for its high spatiotemporal locality and low hardware overhead. However, the irregularity of sparsity induces imbalanced workload under the rigid systolic dataflow, causing performance degradation. Thus, this paper proposed a systolicarray-based architecture, called Sense, for sparse CNN acceleration by model-hardware co-design, achieving large performance improvement. To balance input feature map(IFM) and weight loads across Processing Element(PE) array, we applied channel clustering to gather IFMs with approximate sparsity for array computation, and co-designed a load-balancing weight pruning method to keep the sparsity ratio of each kernel at a certain value with little accuracy loss, improving PE utilization and overall performance. Additionally, Adaptive Dataflow Configuration is applied to determine the computing strategy based on the storage ratio of IFMs and weights, lowering 1.17x-1.8x DRAM access compared with Swallow and further reducing system energy consumption. The whole design is implemented on ZynqZCU102 with 200MHz and performs at 471-, 34-, 53- and 191-image/s for AlexNet, VGG-16, ResNet-50 and GoogleNet respectively. Compared against sparse systolic-array-based accelerators, Swallow, FESA and SPOTS, Sense achieves 1x-2.25x, 1.95x-2.5x and 1.17x-2.37x performance improvement on these CNNs respectively with reasonable overhead.Comment: 14 pages, 29 figures, 6 tables, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEM
    • …
    corecore