158 research outputs found

    Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters:Opportunities and Challenges

    Get PDF
    Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.</p

    Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland

    Get PDF
    Soil organic carbon (SOC) mineralization is affected by ecological restoration and plays an important role in the soil C cycle. However, the mechanism of ecological restoration on SOC mineralization remains unclear. Here, we collected soils from the degraded grassland that have undergone 14 years of ecological restoration by planting shrubs with Salix cupularis alone (SA) and, planting shrubs with Salix cupularis plus planting mixed grasses (SG), with the extremely degraded grassland underwent natural restoration as control (CK). We aimed to investigate the effect of ecological restoration on SOC mineralization at different soil depths, and to address the relative importance of biotic and abiotic drivers of SOC mineralization. Our results documented the statistically significant impacts of restoration mode and its interaction with soil depth on SOC mineralization. Compared with CK, the SA and SG increased the cumulative SOC mineralization but decreased C mineralization efficiency at the 0–20 and 20–40 cm soil depths. Random Forest analyses showed that soil depth, microbial biomass C (MBC), hot-water extractable organic C (HWEOC), and bacterial community composition were important indicators that predicted SOC mineralization. Structural equal modeling indicated that MBC, SOC, and C-cycling enzymes had positive effects on SOC mineralization. Bacterial community composition regulated SOC mineralization via controlling microbial biomass production and C-cycling enzyme activities. Overall, our study provides insights into soil biotic and abiotic factors in association with SOC mineralization, and contributes to understanding the effect and mechanism of ecological restoration on SOC mineralization in a degraded grassland in an alpine region

    Cerebroprotective Effects of Dimeric Copper(II) Bis(o-acetoxybenzoate) on Ischemia-reperfusion Injury in Gerbils

    Get PDF
    The cerebroprotective effects of copper aspirinate [dimeric copper(II) bis(o-acetoxybenzoate)] were investigated in gerbils subjected to 10-min global cerebral ischemia followed b 60-min reperfusion. The results showed that intragastric copper aspirinate (7.5, 15.0 and 30.0 mg Kg−1) markedly promoted the recovery of the electroencephalogram amplitude, attenuated the increase of lipid peroxide content and the decrease of superoxide dismutase activity in the cortex during ischemia-reperfusion injury. It suggested that copper aspirinate possesses potential neuroprotective properties, the mechanism of which might be related to an increase of the activity of endogenous superoxide dismutase

    High-level expression and large-scale preparation of soluble HBx antigen from Escherichia coli

    Get PDF
    The HBx (hepatitis B virus X protein) is a multifunctional regulator of cellular signal transduction and transcription pathways in host-infected cells. Evidence suggests that HBx has a critical role in the pathogenesis of hepatocellular carcinoma. However, the lack of efficient large-scale preparation methods for soluble HBx has hindered studies on the structure and function of HBx. Here, a new pMAL-c2x protein fusion and purification system was used for high-level expression of soluble HBx fusion protein. The high-purity fusion protein was obtained via amylose resin chromatography and Q-Sepharose chromatography. The untagged HBx was efficiently and rapidly purified by Sephadex G-75 chromatography after cleavage by Factor Xa at 23 °C. The purity of active HBx protein was >99% with a very stable secondary structure dominated by α-helix, β-sheet and random structure. The purified HBx protein can be analysed to determine its crystal structure and function and its capabilities as an effective immunogen

    Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland

    Get PDF
    Soil organic carbon (SOC) mineralization is affected by ecological restoration and plays an important role in the soil C cycle. However, the mechanism of ecological restoration on SOC mineralization remains unclear. Here, we collected soils from the degraded grassland that have undergone 14 years of ecological restoration by planting shrubs with Salix cupularis alone (SA) and, planting shrubs with Salix cupularis plus planting mixed grasses (SG), with the extremely degraded grassland underwent natural restoration as control (CK). We aimed to investigate the effect of ecological restoration on SOC mineralization at different soil depths, and to address the relative importance of biotic and abiotic drivers of SOC mineralization. Our results documented the statistically significant impacts of restoration mode and its interaction with soil depth on SOC mineralization. Compared with CK, the SA and SG increased the cumulative SOC mineralization but decreased C mineralization efficiency at the 0–20 and 20–40 cm soil depths. Random Forest analyses showed that soil depth, microbial biomass C (MBC), hot-water extractable organic C (HWEOC), and bacterial community composition were important indicators that predicted SOC mineralization. Structural equal modeling indicated that MBC, SOC, and C-cycling enzymes had positive effects on SOC mineralization. Bacterial community composition regulated SOC mineralization via controlling microbial biomass production and C-cycling enzyme activities. Overall, our study provides insights into soil biotic and abiotic factors in association with SOC mineralization, and contributes to understanding the effect and mechanism of ecological restoration on SOC mineralization in a degraded grassland in an alpine region
    • …
    corecore