1,438 research outputs found

    Transport or Store? Synthesizing Flow-based Microfluidic Biochips using Distributed Channel Storage

    Full text link
    Flow-based microfluidic biochips have attracted much atten- tion in the EDA community due to their miniaturized size and execution efficiency. Previous research, however, still follows the traditional computing model with a dedicated storage unit, which actually becomes a bottleneck of the performance of bio- chips. In this paper, we propose the first architectural synthe- sis framework considering distributed storage constructed tem- porarily from transportation channels to cache fluid samples. Since distributed storage can be accessed more efficiently than a dedicated storage unit and channels can switch between the roles of transportation and storage easily, biochips with this dis- tributed computing architecture can achieve a higher execution efficiency even with fewer resources. Experimental results con- firm that the execution efficiency of a bioassay can be improved by up to 28% while the number of valves in the biochip can be reduced effectively.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    Testing Microfluidic Fully Programmable Valve Arrays (FPVAs)

    Full text link
    Fully Programmable Valve Array (FPVA) has emerged as a new architecture for the next-generation flow-based microfluidic biochips. This 2D-array consists of regularly-arranged valves, which can be dynamically configured by users to realize microfluidic devices of different shapes and sizes as well as interconnections. Additionally, the regularity of the underlying structure renders FPVAs easier to integrate on a tiny chip. However, these arrays may suffer from various manufacturing defects such as blockage and leakage in control and flow channels. Unfortunately, no efficient method is yet known for testing such a general-purpose architecture. In this paper, we present a novel formulation using the concept of flow paths and cut-sets, and describe an ILP-based hierarchical strategy for generating compact test sets that can detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of the proposed method in detecting manufacturing faults with only a small number of test vectors.Comment: Design, Automation and Test in Europe (DATE), March 201

    Observing the Cell in Its Native State: Imaging Subcellular Dynamics in Multicellular Organisms

    Get PDF
    True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments

    Tri-layer self-aligned structure indium gallium zinc oxide thin film transistor with optical synaptic plasticity

    Get PDF
    Since the 1950s, computer computing has been governed by the von Neumann architecture, which allows data to be transmitted across the processor and memory for computation. Nowadays, the demand for large amounts of information transmission has limited the processing speed by the memory bandwidth and generated higher power consumption. The Human brain can perform high-speed operation, store and calculate as one, so the human neuromorphic computation is the next-generation architecture to solve the “von Neumann bottleneck” [1- 2]. In this work, we have successfully developed tri-layer self-aligned structure indium gallium oxide (IGZO) thinfilm transistors (TFTs) with optical-synaptic plasticity. The channel conductance of IGZO TFTs would be modulated after the pulse voltage input from gate electrode. Please click Download on the upper right corner to see the full abstract
    corecore