29 research outputs found

    Temporal variation of gravity field before and after Wenchuan Ms8. 0 earthquake

    No full text
    Absolute and relative gravity data during 1998 to 2008 were used to study gravity field and temporal variation in the North–south seismic-belt region, and their correlation with seismic activities before and after Wenchuan Ms8. 0 earthquake. The temporal variation of gravity field shows that the portentous information of the gravity field reflects the development and occurrence of earthquake more clearly. The variations of gravity field are inhomogeneous in the space-time distribution, and are associated with the development and occurrence of the Wenchuan Ms8. 0 earthquake, also closely connected with active fault tectonics

    Inverse size effect and deformation mechanism in Ti-6Al-4V cutting process – investigation on effect of bimodal microstructure on machining

    Get PDF
    Ti-6Al-4 V finds wide applications in industrial areas due to its unique properties. Though, how its special microstructure (i.e., properties mismatch between different phases) could influence the surface/chip formation mechanism when machining (e.g., size effect) remains unclear. In this study, cutting experiments, simulation and post-processing materials characterizations of bimodal Ti-6Al-4 V were performed. Two interesting new phenomena were revealed: (i) variation of chip segmentation mechanism from regular serrated chip to serration at phase boundary when undeformed chip thickness reduces, (ii) ‘inverse size effect’ of specific shear energy. These findings open a new window of optimizing machining parameters for this specific material

    Intelligent Control in the Application of a Rotary Dryer for Reduction in the Over-Drying of Cut Tobacco

    No full text
    The drying process is fundamental for cut tobacco processing. However, there are some problems related to the drying process such as overheating, or inconsistent control of moisture content. This paper shows how an intelligent controller is designed for an industrial rotary drying system. This controller is applied to a tobacco production unit to reduce overdried cut tobacco and improve the overall unit performance. The proposed control system aims to keep the content of moisture at the dryer outlet as close as possible to the optimal value and improve the homogeneity of the product without any operator intervention. The study shows that, if a reduction of humidity in the cut tobacco drying process is achieved using AI, the quality of the final product improves. In particular, if compared to regulatory control, the proposed method constantly monitors and adjusts the moisture content level in order to reduce the amount of overdried product. The findings of this paper indicate that the suggested process can save at least 222.2 kg of cut tobacco for each batch in the first stage of the drying process

    Enzyme-photo-coupled catalytic systems

    No full text
    Efficient chemical transformation in a green, low-carbon way is crucial for the sustainable development of modern society. Enzyme-photo-coupled catalytic systems (EPCS) that integrate the exceptional selectivity of enzyme catalysis and the unique reactivity of photocatalysis hold great promise in solar-driven 'molecular editing'. However, the involvement of multiple components and catalytic processes challenged the design of efficient and stable EPCS. To show a clear picture of the complex catalytic system, in this review, we analyze EPCS from the perspective of system engineering. First, we disintegrate the complex system into four elementary components, and reorganize these components into biocatalytic and photocatalytic ensembles (BE and PE). By resolving current accessible systems, we identify that connectivity and compatibility between BE and PE are two crucial factors that govern the performance of EPCS. Then, we discuss the origin of undesirable connectivity and low compatibility, and deduce the possible solutions. Based on these understandings, we propose the designing principles of EPCS. Lastly, we provide a future perspective of EPCS

    Modulation of Gut Microbiota by Lonicera caerulea L. Berry Polyphenols in a Mouse Model of Fatty Liver Induced by High Fat Diet

    No full text
    Polyphenols from the Lonicera caerulea L. berry have shown protective effects on experimental non-alcoholic fatty liver disease (NAFLD) in our previous studies. As endotoxins from gut bacteria are considered to be the major trigger of inflammation in NAFLD, this study aims to clarify the regulatory effects of L. caerulea L. berry polyphenols (LCBP) on gut microbiota in a high fat diet (HFD)-induced mouse model. C57BL/6N mice were fed with a normal diet, HFD, or HFD containing 0.5–1% of LCBP for 45 days. The results revealed that supplementation with LCBP decreased significantly the levels of IL-2, IL-6, MCP-1, and TNF-α in serum, as well as endotoxin levels in both serum and liver in HFD-fed mice. Fecal microbiota characterization by high throughput 16S rRNA gene sequencing revealed that a HFD increased the Firmicutes/Bacteroidetes ratio, and LCBP reduced this ratio by increasing the relative abundance of Bacteroides, Parabacteroides, and another two undefined bacterial genera belonging to the order of Bacteroidales and family of Rikenellaceae, and also by decreasing the relative abundance of six bacterial genera belonging to the phylum Firmicutes, including Staphylococcus, Lactobacillus, Ruminococcus, and Oscillospira. These data demonstrated that LCBP potentially attenuated inflammation in NAFLD through modulation of gut microbiota, especially the ratio of Firmicutes to Bacteroidetes

    Interface engineering of organic-inorganic heterojunctions with enhanced charge transfer

    No full text
    Heterostructure materials are increasingly utilized in solar energy conversion to pursue high efficiency and longterm stability. The charge transfer across interfaces gives rise to major energy loss arising from non-ideal interfacial effects, i.e., high interfacial energy barrier and low interfacial contacting area. Herein, we demonstrate a facile interface engineering strategy to eliminate non-ideal interfacial effects. A heterojunction of CN@CP25 is constructed via polyphenol-assisted assembly of titania (P25) and carbon nitride (CN). The uniform dispersion of P25 on CN enlarges the interfacial contacting area of 3.2-fold compared with random dispersion, while the transformation of polyphenols into conjugated carbon facilitates the interfacial charge transfer by switching a 0.4 eV Schottky contact to a 0.1 eV Ohmic contact between CN and P25. A 2.5-fold enhancement of charge transfer flux is obtained with an initial reaction rate of 5185 mu mol h-1 g-1 for photocatalytic nicotinamide regeneration

    Changes of cytokines during a spaceflight analog--a 45-day head-down bed rest.

    Get PDF
    Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity
    corecore