23 research outputs found

    The maximum output force controller and its application to a virtual surgery system

    Get PDF
    It is difficult to achieve ideal virtual surgery transparency and stability when virtual tissue stiffness and damping are high. Typically, the stability of the surgery system is improved, while its transparency is sacrificed. In order to achieve high transparency in virtual surgical interactions, a maximum output force controller based on passive theory is proposed in this work. This controller is then applied in a virtual surgery system. The maximum output force controller predicts the maximum allowable output force above which the system passivity is broken and limits the force presented to the operator to this amount. The main contributions of this work include the following two parts: firstly, the maximum output force controller is developed and applied to a virtual surgery system; secondly, a new criterion for transparency is presented and analyzed for the level of transparency that can be achieved for a virtual surgical system when the stability is guaranteed. Experimental results show that the maximum output force controller can guarantee stability of the virtual surgical interaction with maximum transparency even when the virtual tissue stiffness and damping are high. In addition, the maximum output force controller is a self-adaptive controller. It works well without modification, regardless of the virtual tissue stiffness and damping

    Postural balance in individuals with knee osteoarthritis during stand-to-sit task

    Get PDF
    Objective: Stand-to-sit task is an important daily function, but there is a lack of research evidence on whether knee osteoarthritis (knee OA) affects the postural balance during the task. This study aimed to compare individuals with knee OA and asymptomatic controls in postural balance and identify kinematic and lower extremity muscle activity characteristics in individuals with knee OA during the stand-to-sit task. Methods: In total, 30 individuals with knee OA and 30 age-matched asymptomatic controls performed the 30-s Chair Stand Test (30sCST) at self-selected speeds. Motion analysis data and surface electromyography (sEMG) were collected while participants performed the 30sCST. To quantify postural balance, the displacement of the center of mass (CoM) and the peak instantaneous velocity of the CoM were calculated. The kinematic data included forward lean angles of the trunk and pelvic, range of motion (RoM) of the hip, knee, and ankle joints in the sagittal plane. The averaged activation levels of gluteus maximus, vastus lateralis, vastus medialis, rectus femoris, biceps femoris (BF), tibialis anterior (TA), and medial head of gastrocnemius muscles were indicated by the normalized root mean square amplitudes. Results: Compared with the asymptomatic control group, the knee OA group prolonged the duration of the stand-to-sit task, demonstrated significantly larger CoM displacement and peak instantaneous CoM velocity in the anterior-posterior direction, reduced ankle dorsiflexion RoM, greater anterior pelvic tilt RoM, and lower quadriceps femoris and muscles activation level coupled with higher BF muscle activation level during the stand-to-sit task. Conclusion: This study indicates that individuals with knee OA adopt greater pelvic forward lean RoM and higher BF muscle activation level during the stand-to-sit task. However, these individuals exist greater CoM excursion in the anterior-posterior direction and take more time to complete the task. This daily functional activity should be added to the rehabilitation goals for individuals with knee OA. The knee OA group performs reduced ankle dorsiflexion RoM, quadriceps femoris, and TA activation deficit. In the future, the rehabilitation programs targeting these impairments could be beneficial for restoring the functional transfer in individuals with knee OA

    Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA

    Get PDF
    Thousand-grain weight (TGW) of wheat (Triticum aestivum L.) contributes significantly to grain yield. In the present study, a candidate gene associated with TGW was identified through specific-locus amplified fragment sequencing (SLAF-seq) of DNA bulks of recombinant inbred lines (RIL) derived from the cross between Jing 411 and Hongmangchun 21. The gene was located on chromosome 7A, designated as TaTGW-7A with a complete genome sequence and an open reading frame (ORF). A single nucleotide polymorphism (SNP) was present in the first exon between two alleles at TaTGW-7A locus, resulting in a Val to Ala substitution, corresponding to a change from higher to lower TGW. Cleaved amplified polymorphic sequence (CAPS) (TGW7A) and InDel (TG9) markers were developed to discriminate the two alleles TaTGW-7Aa and TaTGW-7Ab for higher and lower TGW, respectively. A major QTL co-segregating with TaTGW-7A explained 21.7–27.1% of phenotypic variance for TGW in the RIL population across five environments. The association of TaTGW-7A with TGW was further validated in a natural population and Chinese mini-core collections. Quantitative real-time PCR revealed higher transcript levels of TaTGW-7Aa than those of TaTGW-7Ab during grain development. High frequencies of the superior allele TaTGW-7Aa for higher TGW in Chinese mini-core collections (65.0%) and 501 wheat varieties (86.0%) indicated a strong and positive selection of this allele in wheat breeding. The molecular markers TGW7A and TG9 can be used for improvement of TGW in breeding programs

    Multi-year succession of cyanobacteria blooms in a highland reservoir with changing nutrient status, Guizhou Province, China

    Get PDF
    Over the last 22 years significant phytoplankton changes in Hongfeng lake reservoir have been observed with multiple years of harmful cyanobacteria blooms (cHABs). Fish farming and other anthropogenic activities from 1994-2001 triggered the harmful blooms. Nine years after the cessation of aquaculture, a conversion from problematic species (Microcystis spp, Aphanizomenon flos-aquae) to the less problematic species P. limnetica and other associated non-cyanobacteria taxa was recorded. Through this period of change, trophic factors (bottom-up) were re-examined, and correlations between cHABs and selected environmental variables were observed. Higher temperatures, nutrients (TN, TP) and available light significantly favored the development of Microcystis spp blooms. With declining nutrient loads, and a decline in TP relative to TN there was a competitive shift from Microcystis summer blooms to the growth of Pseudanabaena limnetica and other non-cyanobacteria. Pseudanabaena limnetica was favored over Microcystis spp when temperatures were <20°C and TP was <0.03 mg L-1. The apparent species succession to P. limnetica was enhanced by a competitive advantage under varied light conditions. Multiple environmental and biotic conditions (not always nutrients) were driving cHABs. Although only a selected number of environmental variables were examined, the CCA analysis supports observations that temperature and nutrients were associated with the species shift. The replacement of cHABs with the growth of less toxic cyanobacteria like P. limnetica, and other algae creates an interesting scenario (new community condition) for the removal of problematic taxa in reservoir systems. Diverting or controlling blooms will have direct implications on water quality and economic remediation initiatives in reservoir and lake management

    Sivelestat sodium attenuates acute lung injury by inhibiting JNK/NF-κB and activating Nrf2/HO-1 signaling pathways

    Get PDF
    Sivelestat sodium (SIV), a neutrophil elastase inhibitor, is mainly used for the clinical treatment of acute respiratory distress syndrome (ARDS) or acute lung injury (ALI). However, studies investigating the effects of SIV treatment of ALI are limited. Therefore, this study investigated the potential molecular mechanism of the protective effects of SIV against ALI. Human pulmonary microvascular endothelial cells (HPMECs) were stimulated with tumor necrosis factor α (TNF-α), and male Sprague-Dawley rats were intratracheally injected with Klebsiella pneumoniae (KP) and treated with SIV, ML385, and anisomycin (ANI) to mimic the pathogenetic process of ALI in vitro and in vivo, respectively. The levels of inflammatory cytokines and indicators of oxidative stress were assessed in vitro and in vivo. The wet/dry (W/D) ratio of lung tissues, histopathological changes, inflammatory cells levels in bronchoalveolar lavage fluid (BALF), and survival rates of rats were analyzed. The JNK/NF-κB (p65) and Nrf2/HO-1 levels in the HPMECs and lung tissues were analyzed by western blot and immunofluorescence analyses. Administration of SIV reduced the inflammatory factors levels, intracellular reactive oxygen species (ROS) production, and malondialdehyde (MDA) levels and increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in lung tissues. Meanwhile, SIV alleviated pathological injuries, decreased the W/D ratio, and inflammatory cell infiltration in lung tissue. In addition, SIV also inhibited the activation of JNK/NF-κB signaling pathway, promoted nuclear translocation of Nrf2, and upregulated the expression of heme oxygenase 1 (HO-1). However, ANI or ML385 significantly reversed these changes. SIV effectively attenuated the inflammatory response and oxidative stress. Its potential molecular mechanism was related to the JNK/NF-κB activation and Nrf2/HO-1 signaling pathway inhibition. This further deepened the understanding of the protective effects of SIV against ALI

    Optimization of LDPC Codes over the Underwater Acoustic Channel

    No full text
    To combat severe intersymbol interference incurred by multipath propagation of sound waves in the underwater acoustic environment, we introduce an iterative equalization and decoding scheme by iteratively exchanging soft information between a low-density parity check (LDPC) decoder and a decision feedback equalizer. We apply extrinsic information transfer (EXIT) charts to analyze performance of LDPC codes over the acoustic multipath channel. Furthermore, using differential evolution technique, we develop an EXIT-aided method to optimize LDPC codes for the underwater acoustic channel. Design examples are presented for two different realizations of the underwater acoustic channel that are generated by an acoustic ray tracing model. Computer simulations show that the optimized LDPC codes outperform its regular counterpart or Turbo codes under the same coding rate and block length, with gains of 1.0 and 0.8 dB, respectively, at the bit error rate of 10 −5

    Topology Optimization of Long-Thin Sensor Networks in Under-Ice Environments

    No full text

    Cd(II) removal from aqueous solutions by pomelo peel derived biochar in a permeable reactive barrier: modelling, optimization and mechanism

    No full text
    Biochar can have multiple benefits, such as solid waste recycling, water pollution treatment, carbon fixation and sustainability, and it is green, friendly, inexpensive and highly efficient. Therefore, the present study aimed to investigate Cd(II) removal from aqueous solutions using pomelo peel derived biochar combined with a permeable reactive barrier (PRB). Meanwhile, the materials were characterized using SEM, FIIR, XRD, N _2 adsorption, Zeta potential, TGA and XPS. The removal conditions were optimized by a response surface methodology (RSM) and a back propagation combined with genetic algorithm (BP-GA). The results show that there were slight changes in the structure of the pomelo peel derived biochar before and after activation, while the variation was not significant. The specific surface areas of the not activated and activated pomelo peel derived biochars were 3.207 m ^2 g ^−1 and 6.855 m ^2 g ^−1 , respectively. The pore diameter of the former was 4.165 nm and that of the latter was 4.425 nm, indicating that the two materials are mainly mesoporous. BP-GA is more suitable than RSM for optimizing the removal conditions of Cd(II) using the prepared materials combined with PRB. The maximum removal efficiency of Cd(II) was 90.31% at biochar dosage = 4.84, reaction time = 53.75 min, initial Cd(II) concentration = 19.36 mg l ^−1 and initial pH = 6.07. The verification experiment was 88.74% under these experimental conditions, and the absolute error was 1.57%. The saturated adsorption capacity of quartz sand for Cd(II) is approximately 0.08 mg g ^−1 when reaching equilibrium. The saturated adsorption capacity of biochar for Cd(II) is approximately 29.76 mg g ^−1 . Pseudo second order kinetics and Langmuir isotherm adsorption were more suitable for describing the Cd(II) adsorbed from an aqueous solution by activated pomelo peel derived biochar. The adsorption process of Cd(II) by the prepared biochar was spontaneous, endothermic and entropy driven. Our results suggest that the modified pomelo peel derived biochar can be regenerated within the fourth cycle and that it has application prospects as a useful adsorbent for water treatment in PRB systems. This finding provides a reference for relieving Cd pollution and for its large scale removal from wastewater when combined with a PRB system

    ENHANCE TRANSFERABILITY OF ADVERSARIAL EXAMPLES WITH MODEL ARCHITECTURE

    No full text
    Transferability of adversarial examples is of critical importance to launch black-box adversarial attacks, where attackers are only allowed to access the output of the target model. However, under such a challenging but practical setting, the crafted adversarial examples are always prone to overfitting to the proxy model employed, presenting poor transferability. In this paper, we suggest alleviating the overfitting issue from a novel perspective, i.e., designing a fitted model architecture. Specifically, delving the bottom of the cause of poor transferability, we arguably decompose and reconstruct the existing model architecture into an effective model architecture, namely multi-track model architecture (MMA). The adversarial examples crafted on the MMA can maximumly relieve the effect of model-specified features to it and toward the vulnerable directions adopted by diverse architectures. Extensive experimental evaluation demonstrates that the transferability of adversarial examples based on the MMA significantly surpass other state-of-the-art model architectures by up to 40\% with comparable overhead
    corecore