139 research outputs found

    Guarding Embryo Development of Zebrafish by Shell Engineering: A Strategy to Shield Life from Ozone Depletion

    Get PDF
    Background: The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging midultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. Methodology/Principal Findings: Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo) of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. Conclusions: We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research

    Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy

    Get PDF
    The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder

    Tetherin inhibits prototypic foamy virus release

    Get PDF
    Background: Tetherin (also known as BST-2, CD317, and HM1.24) is an interferon- induced protein that blocks the release of a variety of enveloped viruses, such as retroviruses, filoviruses and herpesviruses. However, the relationship between tetherin and foamy viruses has not been clearly demonstrated. Results: In this study, we found that tetherin of human, simian, bovine or canine origin inhibits the production of infectious prototypic foamy virus (PFV). The inhibition of PFV by human tetherin is counteracted by human immunodeficiency virus type 1 (HIV-1) Vpu. Furthermore, we generated human tetherin transmembrane domain deletion mutant (delTM), glycosyl phosphatidylinositol (GPI) anchor deletion mutant (delGPI), and dimerization and glycosylation deficient mutants. Compared with wild type tetherin, the delTM and delGPI mutants only moderately inhibited PFV production. In contrast, the dimerization and glycosylation deficient mutants inhibit PFV production as efficiently as the wild type tetherin. Conclusions: These results demonstrate that tetherin inhibits the release and infectivity of PFV, and this inhibition is antagonized by HIV-1 Vpu. Both the transmembrane domain and the GPI anchor of tetherin are important for the inhibition of PFV, whereas the dimerization and the glycosylation of tetherin are dispensable

    High-Power AlGaInAs/InP DFB Lasers with Low Divergence Angle

    Get PDF
    High-power semiconductor DFB lasers with low divergence angle fundamental transverse mode operating at wavelengths near 1.31 μm have many applications such as analog and digital fiber communication, WDM pump sources, spectroscopy, remote sensing, free-space communication, laser-based radar, and wavelength conversion in nonlinear materials [1]. These devices can potentially reduce system costs by simplifying optical alignment and package processes [2]. Devices with narrow far-field patterns (FFPs) are highly desirable for simple, high-yield optical alignment, as a low divergence angle improves the coupling efficiency and imposes less stringent tolerances in the alignment between the device and the single-mode fiber (SMF). Until now most of the high-power low divergence angle 1.31 μm DFB laser is based on InGaAsP/InP material system which has lower characteristic temperature value T 0 [3]. Here we first demonstrate the high-power fundamental transverse mode 1.31 μm AlGaInAs/InP DFB laser with low divergence angle, enabling uncooled continuous-wave (CW) operation at high ambient temperatures

    Regrowth-free AlGaInAs MQW polarization controller integrated with sidewall grating DFB laser

    Full text link
    We report an AlGaInAs multiple quantum well integrated source of polarization controlled light consisting of a polarization mode converter PMC, differential phase shifter(DPS), and a side wall grating distributed-feedback DFB laser. We demonstrate an asymmetrical stepped-height ridge waveguide PMC to realize TE to TM polarization conversion and a symmetrical straight waveguide DPS to enable polarization rotation from approximately counterclockwise circular polarization to linear polarization. Based on the identical epitaxial layer scheme, all of the PMC, DPS, and DFB laser can be integrated monolithically using only a single step of metalorganic vapor phase epitaxy and two steps of III V material dry etching. For the DFB-PMC device, a high TE to TM polarization conversion efficiency 98% over a wide range of DFB injection currents is reported at 1555 nm wavelength. For the DFB-PMC-DPS device, a 60 degree rotation of the Stokes vector was obtained on the Poincar\'e sphere with a range of bias voltage from 0 V to -4.0 V at IDFB is 170 mA.Comment: arXiv admin note: text overlap with arXiv:2210.1051

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Full text link
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Operative choice for subtrochanteric femoral fracture in school-aged children: Triple elastic stable intramedullary nail versus locking plate

    Get PDF
    BackgroundThe management strategy of subtrochanteric fractures remains controversial, and triple elastic stable intramedullary nail (ESIN) has not been reported for pediatric subtrochanteric fractures. This study aimed to compare the clinical effects of treating school-aged children with subtrochanteric fractures with triple ESINs versus locking plates.MethodsWe conducted a retrospective review of pediatric patients with subtrochanteric femoral fracture receiving either triple ESINs (TE) or locking plates (LPs) between January 2010 and January 2018. Sixteen patients in each group with matched age, sex, and fracture characteristics were included in the study. The preoperative data, including baseline information of the patients, fracture pattern, and types of surgical procedure, were collected from the hospital database. Patients were followed-up at the outpatient clinic in the 3rd month, 6th month, 12th month, and annually afterward. Hardware removal was performed at 9 – 18 months after the primary surgery.ResultsIn all, 16 patients (8.4 ± 1.5-year-old, 7 boys, 9 girls) in the TE group and 16 patients (8.4 ± 1.4-year-old, 7 boys, 9 girls) in the LP group were included. There was significantly less operative time, reduced estimated blood loss, and shortened hospital stay for the TE as compared with the LP (P < 0.001). However, higher fluoroscopy frequency was observed in the TE group than in the LP group (P < 0.001). The time to union was faster in the TE group than in the LP group (P = 0.031). However, the angulation was higher in the TE group (3.2 ± 0.6) than the LP group (1.8 ± 0.5), and the incidence of implant prominence was higher in the TE group (7/16, 43.8%) than the LP group (1/16, 6.3%).ConclusionCompared with the locking plates, triple ESINs demonstrated significantly less operative time, reduced estimated blood loss, and shortened hospital stay. Besides, both TE and LP groups produced satisfactory outcomes in school-aged children with subtrochanteric fractures. Therefore, TE remains a feasible choice for subtrochanteric fractures in school-aged children

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Get PDF
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Psychological capital, mindfulness, and teacher burnout: insights from Chinese EFL educators through structural equation modeling

    No full text
    ObjectiveThis cross-sectional study employs Structural Equation Modeling (SEM) to examine the relationships among psychological capital, mindfulness, and teacher burnout in a sample of 387 Chinese English as a Foreign Language (EFL) educators.MethodsSelf-reported data were analyzed to investigate the direct and indirect effects of psychological capital on teacher burnout, with mindfulness serving as a potential mediator.ResultsOur SEM analysis reveals a significant direct negative association between psychological capital and teacher burnout. Moreover, mindfulness significantly mediates the relationship between psychological capital and burnout, indicating that higher psychological capital leads to increased mindfulness, which subsequently reduces burnout.ConclusionThis study underscores the importance of psychological capital and mindfulness in mitigating teacher burnout among Chinese EFL educators. The findings suggest that interventions targeting both psychological capital and mindfulness practices could bolster teacher well-being and foster a more positive educational environment
    • …
    corecore