57 research outputs found

    Effect of Beclin-1 gene silencing on autophagy and apoptosis of the prostatic hyperplasia epithelial cells

    Get PDF
    Objectives: This study aims to explore the effect of silencing Beclin-1 gene on autophagy and apoptosis of Benign Prostatic Hyperplasia (BPH) (BPH-1) cells under the condition of Androgen Deprivation (AD) and Autophagy Inhibition (AI). Methods: Control group (BPH-1 group), empty carrier group (sh-RNA-BPH-1 group) and Beclin-1 silenced group (sh-Beclin1-BPH-1 group) were set. The Beclin-1 gene silencing efficiency was detected by RT-PCR and Western blot. Autophagic flux was monitored by GFP-LC3 cleavage assay and cell apoptosis was analyzed by flow cytometry. The protein expression levels of LC3, Caspase-3, PARP-1, Bcl-2, and Bax were detected by Western blot. Results: The transfection of sh-Beclin-1 obviously down-regulated the expression of Beclin-1 at both mRNA and protein levels. Under the conditions of AD and AI, silencing of Beclin-1 restrained the autophagy of BPH-1 cells, as evidenced by a decreased number of autophagosomes and down-regulation of LC3-II protein (p < 0.001). The results of flow cytometry showed that the apoptotic rate of sh-Beclin-1 group was elevated significantly compared to the other two groups (p < 0.01). Western blot results showed that silencing of Beclin-1 promoted 89 kd fragmentation of PARP-1 (p < 0.001) and Caspase-3 activation (p < 0.01). Moreover, silencing of Beclin-1 resulted in declined Bcl-2 and augmented Bax protein expression in BPH-1 cells (p < 0.01), which ultimately led to a decreased Bcl-2/Bax ratio. Conclusions: The results indicated that the silencing of Beclin-1 gene hampered autophagy while activating apoptosis in BPH-1 cells. Thus, Beclin-1 may participate in an antagonistic relationship between autophagy and apoptosis in BPH

    Pygopus 2 promotes kidney cancer OS-RC-2 cells proliferation and invasion in vitro and in vivo

    Get PDF
    AbstractObjectiveHuman Pygopus 2 (Pygo2) was recently discovered to be a component of the Wnt signaling pathway required for β-catenin/Tcf-mediated transcription. But the role of Pygo2 in malignant cell proliferation and invasion has not yet been determined.MethodsLentivirus-mediated small interfering RNA (siRNA) and vector-based overexpression were used to study the function of Pygo2 in OS-RC-2 cells. The resulted cells were subject to Western blotting assay, MTT assay, colony formation and cell invasion assays. Furthermore, renal cell carcinoma (RCC) models were established in BALB/c nude mice inoculated with OS-RC-2 cells. Immunohistochemistry (IHC) staining of matrix metalloproteinase-7 (MMP-7), matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) was performed in tumor tissue.ResultsPygo2 gene was successful knocked down and overexpressed in RCC OS-RC-2 cells by using an shRNA and overexpressing vector, respectively. Overexpression of Pygo2 effectively promoted cell proliferation, colony formation and invasion in vitro. Knockdown of Pygo2 obviously inhibited xenograft tumor growth in nude mice. In addition, overexpression of Pygo2 increased the levels of MMP-7, MMP-9 and VEGF in the xenograft tumors.ConclusionPygo2 has a role in promoting cell proliferation, invasion and metastasis, and may regulate angiogenesis via the Wnt/β-catenin signaling pathway

    Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy

    Get PDF
    The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment

    2-[Difluoro(phenylselenyl)methyl]benzo-1,3-thiazole

    No full text
    This short note elaborates a concise protocol for the synthesis of 2-[difluoro(phenylselenyl)methyl]benzo-1,3-thiazole in two steps from the commercially available reagent 2-aminobenzenethiol. The structures of the synthesized compounds are confirmed by 1H-NMR, 13C-NMR and 19F-NMR spectroscopy, infrared (IR) spectra, and high-resolution mass spectrometry

    Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer

    No full text
    Summary: Evaporation, boiling, and condensation are fundamental liquid-vapor phase-change heat transfer processes and have been utilized in many conventional and emerging energy systems. Recent advances in the manipulation of interface wetting and heterogeneous nucleation using micro/nano-structured surfaces have enabled exciting two-phase flow dynamics and heat transfer enhancement. However, independently manipulating droplets, bubbles, or liquid films through surface modification has encountered bottlenecks. In this Perspective, we discuss an emerging strategy where droplets/bubbles are coupled with a liquid film to control fluid dynamics for minimizing the thermal resistance between the liquid-vapor interface and solid substrate, thus significantly enhancing the heat transfer performance beyond the state of the art

    Deep Learning-Based Network Security Data Sampling and Anomaly Prediction in Future Network

    No full text
    Based on the design idea of future network, this paper analyzes the network security data sampling and anomaly prediction in future network. Through game theory, it is determined that data sampling is performed on some important nodes in the future network. Deep learning methods are used on the selected nodes to collect data and analyze the characteristics of the network data. Then, through offline and real-time analyses, network security abnormal events are predicted in the future network. With the comparison of various algorithms and the adjustment of hyperparameters, the data characteristics and classification algorithms corresponding to different network security attacks are found. We have carried out experiments on the public dataset, and the experiment proves the effectiveness of the method. It can provide reference for the management strategy of the switch node or the host node by the future network controller
    • …
    corecore