86 research outputs found

    Interaction of type I interferons and mTOR signaling underlying PRRSV infection

    Get PDF
    Master of Science in Biomedical SciencesDepartment of Anatomy and PhysiologyYongming SangAnimal metabolic and immune systems integrate and inter-regulate to exert effective immune responses to distinct pathogens. The signaling pathway mediated by mechanistic target of rapamycin (mTOR) is critical in cellular metabolism and implicated in host antiviral responses. Recent studies highlight the significance of the mTOR signaling pathway in the interferon (IFN) response. Type I IFNs mediate host defense, particularly, against viral infections, and have myriad roles in antiviral innate and adaptive immunity. In addition to their well-known antiviral properties, type I IFNs also affect host metabolism. However, little is known about how animal type I IFN signaling coordinates immunometabolic reactions during antiviral defense. Therefore, understanding the interaction of mTOR signaling and the type I IFN system becomes increasingly important in potentiating antiviral immunity. Tissue macrophages (MФs) are a primary IFN producer during viral infection, and their polarization to different activation statuses is critical for regulation of immune and metabolic homeostasis. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model, we found that genes in the mTOR signaling pathway were regulated differently in PRRSV-infected porcine alveolar MФs at different activation statuses. Therefore we hypothesize that: 1) the mTOR signaling pathway involves host anti-PRRSV regulation; 2) mTOR signaling interacts with IFN signaling to modulate the antiviral response; and 3) different type I IFN subtypes (such as IFN-α1 and IFN-β) regulate mTOR signaling differently. We show that modulation of mTOR signaling regulated PRRSV infection in MARC-145 cells and porcine primary cells, in part, through regulating production and signaling of type I IFNs. In addition, expression and phosphorylation of two key components in the mTOR signaling pathway, AKT and p70 S6 kinase, were regulated by type I IFNs and PRRSV infection. Taken together, we determined that the mTOR signaling pathway, a key pathway in regulation of cell metabolism, also mediates the type I IFN response, a key immune response in PRRSV infection. Our findings reveal that the mTOR signaling pathway potentially has a bi-directional loop with the type I IFN system and implies that some components in the mTOR signaling pathway can serve as targets for augmentation of antiviral immunity and therapeutic designs

    Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity

    Get PDF
    Citation: Sang, Y. M., Liu, Q. F., Lee, J., Ma, W. J., McVey, D. S., & Blecha, F. (2016). Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity. Scientific Reports, 6, 17. doi:10.1038/srep29072Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption

    Cross-Species Genome-Wide Analysis Reveals Molecular and Functional Diversity of the Unconventional Interferon-ω Subtype

    Get PDF
    Innate immune interferons (IFNs), particularly type I IFNs, are primary mediators regulating animal antiviral, antitumor, and cell-proliferative activity. These antiviral cytokines have evolved remarkable molecular and functional diversity to confront ever-evolving viral threats and physiological regulation. We have annotated IFN gene families across 110 animal genomes, and showed that IFN genes, after originating in jawed fishes, had several significant evolutionary surges in vertebrate species of amphibians, bats and ungulates, particularly pigs and cattle. For example, pigs have the largest but still expanding type I IFN family consisting of nearly 60 IFN-coding genes that encode seven IFN subtypes including multigene subtypes of IFN-α, -δ, and -ω. Whereas, subtypes such as IFN-α and -β have been widely studied in many species, the unconventional subtypes such as IFN-ω have barely been investigated. We have cross-species defined the IFN evolution, and shown that unconventional IFN subtypes particularly the IFN-ω subtype have evolved several novel features including: (1) being a signature multi-gene subtype expanding primarily in mammals such as bats and ungulates, (2) emerging isoforms that have superior antiviral potency than typical IFN-α, (3) highly cross-species antiviral (but little anti-proliferative) activity exerted in cells of humans and other mammalian species, and (4) demonstrating potential novel molecular and functional properties. This study focused on IFN-ω to investigate the immunogenetic evolution and functional diversity of unconventional IFN subtypes, which may further IFN-based novel antiviral design pertinent to their cross-species high antiviral and novel activities

    H9N2 Viruses Isolated From Mammals Replicated in Mice at Higher Levels Than Avian-Origin Viruses

    Get PDF
    H9N2 subtype influenza A virus (IAV) has more than 20 genotypes that are able to cross species barriers and expand from birds to mammals and humans. To better understand the impact of different H9N2 genotypes and their characteristics, five H9N2 viruses from different hosts including chickens, geese, pigs, mink, and humans representing the B69 88(Gs/14, Ck/15, and Mi/14), B35 (Sw/08) and G9 genotypes (Hu/04) were infected in chicken and mice. In mice, mammal-origin viruses replicated at higher levels in the lungs compared to avian viruses. The goose-virus replicated at the lowest levels indicating poor adaptation. Increased pro-inflammatory cytokines were positively correlated with viral loads in the lung. In chickens, all viruses were excreted from cloacal and/or oropharyngeal swabs. Interestingly, Mink-origin virus exhibited higher virulence and replication in mice and chickens. Our data indicate that mammal-origin H9N2 viruses are more adapted and virulent in mice than the avian-origin viruses

    Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    Get PDF
    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARSCoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn’t attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses
    • …
    corecore