119 research outputs found

    A simulation study of support break-off and water inrush during mining under the high confined and thick unconsolidated aquifer

    Get PDF
    The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer

    Material Removal Optimization Strategy of 3D Block Cutting Based on Geometric Computation Method

    Get PDF
    During the material removal stage in stone rough processing, milling type has been widely explored, which, however, may cause time and material consumption, as well as substantial stress for the environment. To improve the material removal rate and waste reuse rate in the rough processing stage for three-dimensional stone products with a special shape, in this paper, circular saw disc cutting is explored to cut a convex polyhedron out of a blank box, which approaches a target product. Unlike milling optimization, this problem cannot be well solved by mathematical methods, which have to be solved by geometrical methods instead. An automatic block cutting strategy is proposed intuitively by considering a series of geometrical optimization approaches for the first time. To obtain a big removal block, constructing cutting planes based on convex vertices is uniquely proposed. Specifically, the removal vertices (the maximum thickness of material removal) are searched based on the octree algorithm, and the cutting plane is constructed based on this thickness to guarantee a relatively big removal block. Moreover, to minimize the cutting time, the geometrical characteristics of the intersecting convex polygon of the cutting plane with the convex polyhedron are analyzed, accompanied by the constraints of the guillotine cutting mode. The optimization algorithm determining the cutting path is presented with a feed direction accompanied by the shortest cutting stroke, which confirms the shortest cutting time. From the big removal block and shortest cutting time, the suboptimal solution of the average material removal rate (the ratio of material removal volume to cutting time) is generated. Finally, the simulation is carried out on a blank box to approach a bounding sphere both on MATLAB and the Vericut platform. In this case study, for the removal of 85% of material with 19 cuts, the proposed cutting strategy achieves five times higher the average material removal rate than that of one higher milling capacity case

    The Performance of the Construction of a Water Ecological Civilization City: International Assessment and Comparison

    Get PDF
    The water ecological environment problems brought about by rapid urbanization have prompted the proposal and implementation of different approaches to urban water ecological construction, such as eco-cities, best management practices (BMPs), and low-impact development (LID). As one of the most representative urban water ecological management policies in China, the Water Ecological Civilization City (WECC) was proposed in 2013, and 105 cities were selected for pilot construction. Many studies have evaluated the effectiveness of WECC construction, but international quantitative comparison is lacking. To address this, an urban Water-Human-Health (WHH) Assessment Model, considering water resources, ecological environment, economic and social development level, and water resources utilization, was developed and applied to five WECC pilot cities in China and 10 other cities worldwide, in which mainstream urban water ecological construction modes have been used. Principal component analysis of the index values in the assessment system was used to evaluate the current status of water ecosystem health in the 15 cities, showing that Sydney, Cleveland, and Hamburg were the most advanced in urban water ecological management. The two cities with the best evaluation results (Sydney and Cleveland), and the WECC city with the highest score (Wuhan) were selected for documentary analysis of their water ecological construction documents to identify similarities and differences to inform best practice internationally for urban water ecological construction. The results showed that Sydney and Cleveland attach similar emphasis across most constituents of urban water ecological construction, while, for Wuhan, greater importance is attached to water resource management and water culture. The advantages and disadvantages of WECC construction and international experience are discussed. The WHH assessment model proposed in this study provides a new quantitative evaluation method for international urban water ecological health evaluation, which could be further improved by including an urban flood risk indicator

    Two‐Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence

    Get PDF
    The tracking of cellular senescence usually depends on the detection of senescence‐associated β‐galactosidase (SA‐β‐gal). Previous probes for SA‐β‐gal with this purpose only cover a single dimension: the accumulation of this enzyme in lysosomes. However, this is insufficient to determine the destiny of senescence because endogenous β‐gal enriched in lysosomes is not only related to senescence, but also to some other physiological processes. To address this issue, we introduce our fluorescent probes including a second dimension: lysosomal pH, since de‐acidification is a unique feature of the lysosomes in senescent cells. With this novel design, our probes achieved excellent discrimination of SA‐β‐gal from cancer‐associated β‐gal, which enables them to track cellular senescence as well as tissue aging more precisely. Our crystal structures of a model enzyme E. coli β‐gal mutant (E537Q) complexed with each probe further revealed the structural basis for probe recognition.<br/

    A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes

    Get PDF
    Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep

    Height of Mining-Induced Fractured Zones in Overlying Strata and Permeability of Rock with Nonpenetrative Fractures

    No full text
    Exploitation of shallow thick coal seams that are overlain by phreatic aquifers may cause loss of the water resource and destruction of the surface ecological environment. In order to explain the phenomenon that the actual leakage of phreatic water is greater than the predicted value, field investigation and analogue simulation were carried out, and the nonpenetrative fractured zone (NFZ) was proposed based on the original three zone theory. Further, a “vertical four-zone model” was established and the overlying strata was divided into a caved zone (CZ), through-going fractured zone (TFZ), NFZ, and continuous zone (COZ) from the bottom to the top. The characteristics of fractured rock within NFZ and the determination method of its height were studied. The results showed that the height of NFZ ranged from 11.55 to 21.20 m, which was approximately 0.17 times the combined height of the TFZ and the CZ. To reveal the mechanism of phreatic water leakage, the permeability of rock within NFZ was studied for their premining and postmining using an in situ water injection test and laboratory test. The results showed that the permeability of the rock in NFZ was increased by 7.52 to 48.37 times due to mining, and the magnitude of the increase was nonlinear from top to bottom. The increase of permeability of tested specimens was also related to the lithology. The results of the study are helpful to the prediction of the potential loss of phreatic water and the determination of the mining thickness

    A Simulation Study of Support Break-Off and Water Inrush during Mining under the High Confined and Thick Unconsolidated Aquifer

    Get PDF
    The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer

    1.4-kV AlGaN/GaN HEMTs on a GaN-on-SOI Platform

    No full text
    We demonstrate high-voltage depletion-mode and enhancement-mode (E-mode) AlGaN/GaN high-electron-mobility transistors (HEMTs) on a GaN-on-silicon-on-insulator (SOI) platform. The GaN-on-SOI wafer features GaN epilayers grown by metal-organic chemical vapor deposition on a p-type (111) Si SOI substrate with a p-type (100) Si handle wafer. Micro-Raman spectroscopy significantly reveals reduced stress in the GaN epilayers, which is a result expected from the compliant SOI substrate. E-mode HEMTs fabricated by fluorine plasma implantation technique deliver high ON/OFF current ratio (10(8)-10(9)), large breakdown voltage (1471 V with floating substrate), and low ON-resistance (3.92 m Omega . cm(2))
    corecore