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Abstract: During the material removal stage in stone rough processing, milling type has been widely 
explored, which, however, may cause time and material consumption, as well as substantial stress 
for the environment. To improve the material removal rate and waste reuse rate in the rough pro-
cessing stage for three-dimensional stone products with a special shape, in this paper, circular saw 
disc cutting is explored to cut a convex polyhedron out of a blank box, which approaches a target 
product. Unlike milling optimization, this problem cannot be well solved by mathematical methods, 
which have to be solved by geometrical methods instead. An automatic block cutting strategy is 
proposed intuitively by considering a series of geometrical optimization approaches for the first 
time. To obtain a big removal block, constructing cutting planes based on convex vertices is uniquely 
proposed. Specifically, the removal vertices (the maximum thickness of material removal) are 
searched based on the octree algorithm, and the cutting plane is constructed based on this thickness 
to guarantee a relatively big removal block. Moreover, to minimize the cutting time, the geometrical 
characteristics of the intersecting convex polygon of the cutting plane with the convex polyhedron 
are analyzed, accompanied by the constraints of the guillotine cutting mode. The optimization al-
gorithm determining the cutting path is presented with a feed direction accompanied by the short-
est cutting stroke, which confirms the shortest cutting time. From the big removal block and shortest 
cutting time, the suboptimal solution of the average material removal rate (the ratio of material 
removal volume to cutting time) is generated. Finally, the simulation is carried out on a blank box 
to approach a bounding sphere both on MATLAB and the Vericut platform. In this case study, for 
the removal of 85% of material with 19 cuts, the proposed cutting strategy achieves five times higher 
the average material removal rate than that of one higher milling capacity case.  

Keywords: block cutting; data reconstruction; convex polyhedron (CPH); convex polygon (CPG); 
path optimization; average material removal rate (AMRR) 
 

1. Introduction 
The stone processing industry has adverse effects on the environment, economy and 

sustainability. Stone processing causes heavy pollution from dust and CO2 emissions, and 
high water and energy consumption, which brings tremendous pressure and threats to 
the ecological environment, especially in natural stone mining areas [1]. On the other 
hand, with the development of modern civilized society, the stone industry is indispen-
sable and has become increasingly important. Moreover, the demands and varieties of 
stone products are increasing day by day. Therefore, the demand for the stone industry 
puts forward higher requirements for stone processing, especially in the rough processing 
stage. Building a green manufacturing system and process scheme, developing energy-
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saving and emission reduction optimization technologies and improving the processing 
efficiency of the stone industry have attracted more and more attention recently [1,2].  

In the machining process of special-shaped stone products, the traditional rough pro-
cessing adopts diamond wire sawing or circular sawing for simple tasks [2,3], or conven-
tional milling for simple tasks [4], or automatic milling for complex tasks [5] with a dia-
mond grinding wheel, etc., but such processing modes cannot realize automation com-
pletely, or are accompanied by low waste utilization, a large processing time, high con-
sumption and serious tool wear even for straight cuts. Although the milling process has 
reflected automation to some extent, a large amount of dust will be generated in the ma-
chining process. The above mentioned processes can often not meet the needs of green 
manufacturing and high-efficiency machining in the rough machining stage. 

For a material removal optimization strategy, the analysis methods of different ma-
chining tools are completely different. Owning to the distinct advantages of having a big 
cutting depth and high cutting linear velocity, the diamond circular saw blade is widely 
used in the stone cutting process, which provides a possible way to achieve efficient green 
processing [1,6]. It is noted that circular saws are known to likely be the cheapest and 
fastest motorized saw available [7,8]. With the development of the multi axis linkage tech-
nology of machining machinery, the applications of 5–6 axis NC machine tools and robots, 
some interesting results have been reported in recent years on the material removal 
method during the rough machining process using circular saw blades. In [1], an energy 
consumption prediction model of the stone sawing process of a circular saw was pro-
posed. By predicting the power and energy consumption in the whole sawing process, the 
optimal scheme considering the variable material removal rate (MRR) could be discussed 
for stone processing to achieve energy saving and emission reduction. In [8], a technique 
to cut freeform curves with a flexible circular saw was addressed by setting the width of 
the cutting edge larger than the width of the saw body to ensure there was no friction 
between the machined surface and the saw body while cutting. Moreover, cutting any 
polygon down to an inner complex nonconvex shape was achieved by a sequence of 
straight cuts with linear-time algorithms in [9], where the cuttability of a small saw and 
large saw was analyzed attentively. Ref. [10] studied the algorithm for cutting polyhedral 
shapes with a hot wire cutter, utilizing computational geometry techniques to solve the 
problems of lines and segments in the cutting process. Particularly used in recent years 
when fabricating freeform geometries, in order to find collision-free tangential cutting di-
rections, a conservative algorithm for line cutting with a wire cutter was presented by [11], 
which provided advanced techniques to remove large amounts of material. Exploring the 
material cutting of 2D or 3D geometric shapes, in [12], an approximation algorithm for 
cutting out convex polygons was presented, which can cut convex polygons from the 
plane at a minimum cost by designing an optimal cutting sequence. Their algorithm can 
achieve a constant approximation ratio of the paper diameter to the polygon diameter. On 
the basis of [12], in [13], an approximate algorithm for cutting out a convex polyhedron 
from a sphere was surveyed, in which several approximate algorithms were discussed to 
find the plane sequence with the minimum cutting cost. Ref. [14] proposed a method of 
3D curved block cutting analysis by utilizing the advantages of topology and computa-
tional geometry in geological solid modeling, where 3D curved blocks were formed with 
less calculation and memory. These studies not only provide feasibility for a stone cutting 
plan with a diamond circular saw, but also provide a geometrical analysis method for 
solving the geometrical characteristics of block cutting optimization strategies to some 
extent. 

Despite some of the new algorithms and analysis methods being investigated in 
[11,14], to the best of our knowledge, the theoretical research available on the optimization 
strategies of block sawing with a circular saw blade for special-shaped stone in the rough 
machining stage is currently sparse. This is due to the need to touch upon the convex 
polyhedron (CPH) reconstruction techniques of computational geometry and computer 
graphics, and the constraints of cutter head feeding along a straight line in the cutting 
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process. The geometric challenges have also been stated for multi axis machining includ-
ing the material properties, tools shapes, accessibility, collision detection, etc. [11]. Alt-
hough line cutting [11] was an available new and flexible style for automatic block cutting, 
the cutting technique was completely different from saw disc cutting. Consequently, these 
studies have motivated us to find out more about block cutting optimization. According 
to the characteristics of the stone rough machining stage, making full use of the ad-
vantages of the diamond circular saw and taking into account the average material re-
moval rate (AMRR) as the cost, we propose a cutting optimization strategy for special-
shaped stone blocks with a large material removal amount and a short cutting time, so as 
to automatically realize removing materials with high efficiency while ensuring energy 
saving and emission reduction. 

The main contributions in this study can be summarized as follows: (i) In order to 
automatically obtain a set of relatively optimal cutting planes to ensure a big removal 
block for each cutting, the method of constructing a cutting plane (CP), in turn, is pro-
posed according to the geometrical characteristic of the CPH in space and with the data 
reconstruction of the CPH, where the octree algorithm is used to search for the removal 
vertices of the CPH for each cutting to reduce the amount of calculation. (ii) Except for the 
cutting of a big block, another key point is to reduce the cutting time, whose optimization 
model is thus established. The convex polygon (CPG) generated by the intersection of the 
CP with the parent CPH is analyzed, where the optimization objective and optimization 
algorithm for determining the feed direction and starting point of the cutting path are 
addressed to produce the shortest cutting time. From (i) and (ii), the suboptimal solution 
of the AMRR for block cutting is obtained. 

Cutting strategies with a circular saw will play a particularly important role not only 
in 3D stone processing but also in wood, metal and harder diamond 3D processing. This 
strategy may be not very satisfactory, nevertheless, which leads us to explore more feasi-
ble geometric techniques for efficient 3D cutting, whether for convex or nonconvex poly-
hedrons. 

The rest of this paper is organized as follows: In Section 2, preliminary information 
regarding the block cutting mechanism is described. Section 3 addresses the reconstruc-
tion description of the CPH with vertex–face information. Section 4 investigates the 
scheme to design cuttable big blocks by constructing the CP. In Section 5, the cutting time 
optimization method is presented by considering the geometrical analysis of the cutting 
path. Before the conclusion in Section 7, validation studies are addressed in Section 6. 

2. Preliminaries: Block Cutting Mechanism 
The definitions of the symbols and units used are shown in Table 1.  

Table 1. Nomenclature. 

Symbols Quantity Unit Symbols Quantity Unit 

0Q  Blank box (Blank workpiece) / csiP  
Vertex set of intersetion 

CPG 
/ 

1iQ−  Parent CPH / iS  The ith intersection CPG / 

iQ  Child CPH / T 
Homogeneous 

transformation matrix 
/ 

MQ  Final CPH / R Radius of sawblade mm 

riQ  Removal block by the ith cutting / fv  Feeding speed mm/min 

π  Cutting plane / riV  
The ith material removal 

volume 
mm3 

iπ  The ith CP / iT  The ith cutting time  min 

1iP−  Vertex set of 1iQ −  / W Width of CPG mm 

riP  Removal vertex set of the ith cutting / iL  Cutting path mm/min 
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In the rough machining process of removing materials, due to the significant differ-
ences in shape between the original blank and the final product, rapidly removing most 
of the extra materials on the original blank to form a rough blank has become one of the 
most important processes. For any 3D special-shaped product, in the rough machining 
stage of removing materials, it can be representatively wrapped as a compact bounding 
sphere (BS) or bounding ellipsoid (BE) to perform further cutting exploration. A BS or BE 
is selected depending on the 3D shape of the special-shaped product. If the product is a 
thin, long shape we would choose the corresponding blank box and a BE as a target to 
perform the rough cutting, conversely, for a short, round shape we would choose a BS. 
We would hope not to have any unnecessary material consumption. For instance, in Fig-
ure 1, the 3D symmetrical penguin and its BS are shown simultaneously. 

Hence, when confirming the machining allowance, this paper considers the compact 
BS to be a typical target shape for the rough cutting of a blank CPH (a blank box), 0Q , 
which reflects the oriented bounding box (OBB) of the BS This guarantees the efficient 
removal of the extra materials without overcutting and excessive material consumption. 
In the blank CPH cutting, we need to design the optimal cutting strategy to cut out the 
final CPH, MQ , from 0Q  to approximate the target BS, as shown in the cutting schematic 
diagram in Figure 2, thus satisfying the characteristics of the circular saw processing. To 
solve this problem, the cutting process should be analyzed and monitored, not only com-
bining the theory from computational geometry and computer graphics, but also taking 
into account the technique of the processing plan and design, which may bring complexity 
and challenges to the design and implementation of the cutting strategy. If iπ  denotes 
the ith CP, the cutting optimization process reflects a series of optimization processes of 

iπ  intersections with the CPH and the optimization process of each cutting path. The 
problem of the material removal following cutting can be described as follows: 
• Reconstruction description of the CPH: During a continuous block cutting process, it 

is inevitable to be confronted with the problem of the CPH reconstruction and inter-
section calculation between a plane and the CPH combining with computational ge-
ometry. Therefore, it is important but challenging to update the CPH information 
including removal vertices, intersection vertices, intersection faces and updated faces 
using an appropriate, available data structure. We hope these can be efficiently im-
plemented to carry out dynamic data storage so that any queries about the workpiece 
during the cutting process can be answered with the need for less data and calcula-
tion. Meanwhile, the visual image of the live cutting can be displayed to demonstrate 
the reconstruction of the CPH after each cutting. 

• Design cuttable big blocks: For block cutting, aiming for the highest efficiency for the 
removal of materials, it is better when removal blocks are designed larger, and as far 
as possible, with the minimum number of cutting times. The difficult question is how 
to construct the CP so as to determine the angle of the circular saw, which is related 
to the vertices of the blank CPH and the BS surface.  

• Optimize cutting time: The cutting time under the condition with a constant feed 
speed can be confirmed by investigating the cutting path. Therefore, in order to ob-
tain the shortest cutting time, it is necessary to analyze the geometrical characteristics 
of the CPG generated by the intersection of the CP with the CPH, so as to calculate 
the cutting feed direction and cutting point of the shortest path under constraints. 
In the real machining process, it is necessary to comprehensively consider the ma-

chining efficiency and machining allowance alongside the capacity of the machine tools 
or robots. Therefore, the optimization strategy of 3D block cutting discussed in the paper 
makes the following assumptions: (1) The BS of the special-shaped product is regarded as 
the shape of the target object; (2) the convex polyhedral block is cuttable by a circular saw 
when its angle satisfies the geometrical constraints of the mechanism of the machine tools 
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or robots and it is set up properly. (3) In the cutting process, there is no interference be-
tween the cutter and the stone. Moreover there are no obstacles around. 

 
Figure 1. 3D penguin and its BS. 
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Figure 2. Schematic diagram of block cutting. 

3. Reconstruction Description of the CPH 
The essence of the removal of material when block cutting is found in the process of 

the intersection of the CP with the parent CPH to produce the child CPH. The vertices, 
edges and faces of the CPH will be updated dynamically in the cutting process, which is 
a complex process with tremendous and heavy computation and data storage [14,15]. In 
order to realize continuous cutting and the dynamic visual effect automatically, the up-
dating of information with a relatively simple data structure is introduced to reconstruct 
the CPH in the updating process. 

3.1. Data Structure of CPH 
In the cutting process, updating the polyhedron experiences tedious and algorithmi-

cally complex updates of the data structure, which is used to describe the significant geo-
metrical features of the convex polyhedron and bounding sphere [14]. As the cutting is 
completed, the cut edge causes changes in the number of faces, edges and vertices on the 
child polyhedron. In the literature, some data structures for a polyhedron in 3D space 
have been proposed, such as single level, 2 or 3 levels or half-edge data structures [15,16], 
which are for a face list, vertex–face list, vertex–edge–face list or doubly connected edge 
list. In order to realize the dynamic storage, querying and management of polyhedron 
data efficiently, a double level data structure for the vertex–face list is established, as 
shown in Figure 3, to describe the geometrical characteristics of the polyhedron, which 
retains the vertex–face information to guarantee that the volume of the CPH can be calcu-
lated and the cutting calculation can be implemented dynamically with a relatively small 
calculation and amount of storage. Here, every vertex and face of a polyhedron are in-
dexed separately and the array data of each face lists the allocated vertices of each face so 
that they meet in a counter clockwise (CCW) order. Namely, the vertices are listed in a 
CCW order and the array of face lists is filled with the index of the vertex list. 
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Figure 3. Vertex–face data structure. 

3.2. CPH Model Reconstruction 
Based on the vertex–face data structure, the reconstruction process of the CPH is as 

follows: Let 1,2,...,i M=  denote the number of cuts. Given (i − 1)th vertex set

}{1 1,1 1,2 1,, ,i i i i kP P P P− − − −=    of the parent polyhedron 1iQ −  and the ith CP iπ  in 3D 

space, where k  denotes k-th vertex. It is then possible to compute renewed vertex and 
face lists of the cutting process when the removal vertices and intersection face of 1iQ −  
are confirmed; in this way, we complete the dynamic data management of the continuous 
cutting process and the quantitative evaluation of the cutting algorithm. The updating 
process follows three steps: 

Step1: Judge removal vertices 
In order to yield the update vertices in the cutting process, the first thing is to judge 

the vertices to cut off. Intuitively, from the schematic diagram of block cutting as shown 
in Figure 2, iπ  for each cutting divides the whole space into two half spaces [15,17]. Ac-
cording to binary space partition algorithm (BSP), the positive and negative half space can 
be defined by the normal vector of iπ  as the boundary. The half space pointed by the 
normal vector is the positive half space, which is the half space to be removed, and vice 
versa, the negative half space is the reserved CPH part, which is the child CPH. Aiming 
at vertex set }{1 1,1 1,2 1,, ,i i i i kP P P P− − − −=    of the parent CPH, the vertex partition equation 

is established as follows 

ቐ𝜋௜ = 𝐾஺௜ ⋅ 𝑥 + 𝐾஻௜ ⋅ 𝑦 + 𝐾஼௜ ⋅ 𝑧 + 𝐾஽௜𝜋௜௞ > 0,𝑃௜ିଵ,௞ ∈ 𝑃௥௜𝜋௜௞ ≤ 0,𝑃௜ିଵ,௞ ∉ 𝑃௥௜  (1)

where AiK , BiK , CiK , DiK  represent the equation coefficients of iπ ; ikπ  are the solu-

tions of the plane equation for each vertex of 1iQ − ; hence, the removal vertex set

}{ 1 2= , , ,ri ri ri rinP P P P  by the ith cutting can be obtained, and n is the number of vertices to 

be cut off. 
Step2: Calculate intersection vertices (CPG) 
If one knows the vertices that should be removed, the edges that should be cut can 

be deduced. This means that the CP can be calculated based on some of that information. 
For each cutting, one CP intersects with one CPH, then an intersection CPG is generated. 
Calculating CPG vertices need to judge the edges of the CP intersecting with the parent 
CPH and find its intersection. As can be seen from Section 3.1, the data structure stores 
the vertex–face list, ignoring the storage of the edge list. However, the face list is composed 
of vertices allocated by the right-hand rule. Therefore, we can connect two adjacent verti-
ces in the face list to determine the edges. To judge whether the edge of the parent CPH 
intersects with iπ , Equation (1) can be used. If the two vertices of the edge are located on 
the positive and negative half space of the CP separately, the edge is intersected by the 
CP. Otherwise, there is no intersection. In addition, by vector parallel condition, the equa-
tion of the intersection edges of the CPH can be written as follows 
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( ) ( ) ( )iq iq iq

iq iq iq

x x y y z z
m n p

− − −
= =  (2)

where ( , , )iq iq iqx y z  is any vertex on the intersection edge iqE  of the parent CPH, 

( , , )iq iq iq iqs m n p=


 is the direction vector of iqE  by calculating two adjacent vertices, and 

1, 2 , ...,q h=  represents the number of the intersection edges of ith cutting. 
For the intersection edges of the parent CPH and the CP, the intersection point can 

be solved by synthesizing Equations (1) and (2). The vertex set of the intersection CPG is 
expressed as { }1 2, , ,csi csi csi csihP P P P=  . It is worth noting that since each edge of the CPH 
is shared by two faces, they intersect with the CP to obtain the intersection point. After 
yielding the intersection point, we first store and query the intersection calculation in the 
temporary list before obtaining all intersection points in one cutting, then update the ver-
tex list to avoid redundant and incorrect calculations. 

Step3: Update faces of child CPH 
Based on steps 1 and 2, the faces of the child CPH can be constructed. As can be seen 

from Figure 2, the vertices in the negative half space of iπ  and the intersection points in 
the parent CPH constitute the vertex list of the child CPH. Hence, one can see that the 
faces in the child CPH can also be divided into two categories: one is the original face 
(remained face, e.g., A D DA′ ′  in Figure 2) or a part of the original face (renewed face, 
e.g., 23 22cs csA ABP P′  in Figure 2) of the parent CPH, and the other is the new face of the 

intersection CPG, e.g., 21 22 23 24cs cs cs csP P P P  in Figure 2. To construct the first type face, we 
need to delete the vertices of the parent CPH on the basis of steps 1 and 2, and reserve or 
add the vertices that do not belong to the data set riP  to the child CPH. If the adjacent 
vertices lie on both sides of the CP, the indices of the intersection point 

{ }1 2, ,csi csi csi csihP P P P=   are added to the face list of the child CPH replacing data infor-
mation of all riP  and replenishing renewed vertex indices in the corresponding face list. 

To construct the second type face, since a disordered vertices set of the intersection 
CPG has been obtained in step 2, and the data structure follows CCW order rule, it is 
necessary to reorder the CPG vertices obtained in step 2. It is difficult to sort a random 
point with a feature in 3D space even if they are in one plane. Therefore, utilizing a uni-
form linear coordinate transformation method, we hope that the 3D data description of 
the CPG vertices can be converted into a 2D data description in a plane to analyze where 
the centroid ( , , )c c cx y z  of the transformed CPG coincides with the coordinate origin. If 
the normal vector iN  of the CPG, as shown in Figure 4, which is calculated from the ver-
tices of CPG, is not perpendicular to any plane of XOY, YOZ and XOZ in frame O of CPH, 
it is possible to express the coordinate transformation between the frames O and O′. Let 
the centroid O′ be the origin of the frame of the CPG, and the normal vector Ni be a coor-
dinate axis. Referring to Figure 4, frame O′ is obtained from the frame O by translating it 
along X, Y and Z axes by ,c cx y  and cz , respectively, followed by two times rotation of 
β  about Z and γ  about X with respect to the current frames. Therefore, the 4 4×  homo-
geneous transformation matrix can be written as 

cPT T R Rβ γ= ⋅ ⋅  where 

cos sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

Rβ

β β
β β

 
 − =
 
 
  

, 
1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

Rγ

γ γ
γ γ

 
 
 =
 −
 
  

, 
1 0 0
0 1 0
0 0 1
0 0 0 1

c

c

c
P

c

x
y

T
z

 
 
 =
 
 
  

  

Rβ , Rγ  and 
cPT  denote the rotation and translation transformation matrices sepa-

rately. Completing the transformation to reach frame O′ from frame O, the vertices of CPG 
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lie in plane X′O′Y′, Y′O′Z′ or X′O′Z′ of the coordinate system with the centroid origin, so 
that its vertices can be sorted simply according to the angle between the vector of the 
origin to the corresponding vertex and the Z′, X′ or Y′ axis. Otherwise, the vertices of the 
CPG can be sorted directly based on the axes of the CPH without coordinate transfor-
mation. At this point, the vertex list of the second type face has been updated completely. 

Z

X

YO

O′

X′

Y′

Z′
iNγ
β

 
Figure 4. Coordinate description. 

The dynamic updating algorithm of the CPH, i.e., the CPH list updating, can be sum-
marized as follows (Algorithm 1): 

Algorithm 1 CPH List Updating. 
Input:  Vertex-Face List of Qi−1, πi 
Output: Vertex-Face List of Qi 
1:  function ConstructCPHList(Vertex-Face List of Qi−1 ,πi ) 
2:  // Construct the Vertex-Face List of the first type face of Qi 
3:  for all F in Face List of Qi−1 do 
4:  for all vertexi−1,j in Fm do 
5:  vertexi−1,j ←Vertex of Qi−1[Fm [j]] //Index the corresponding vertex 
6:  vertexi−1,j+1 ←Vertex of Qi−1[Fm [j + 1]] 
7:  if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1) ≤ 0 then//Two vertices are in negative half-space 
8:  Vertex List of Qi ←vertexi−1,j , vertexi−1,j+1 
9:  Face List of Qi ←indexes of vertexi−1,j and vertexi−1,j+1  

10:  else if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1 ) > 0 then//Two vertices lie on either side of πi 
11:  Ei−1,j ←line(vertexi−1,j, vertexi−1,j+1 ) 
12:  Pcsij ←Ei−1,j ∩ πi //Find the intersection of Ei−1,j and πi 
13:  if Pcsij ∉ T empList then 
14:  T empList←Pcsij //T empList is used to store the Pcsij 
15:  Vertex List of Qi ←Pcsij 
16:  end if 
17:  Face List of Qi ←index of Pcsij 
18:  end if 
19:  end for 
20:  end for 
21:  // Construct the Vertex-Face List of the second type face of Qi 
22:  [Ni ]←ComputeNormalVector(Pcsi) 
23:  [Pcsi ]←3DCoordinateTransformation(Ni, Pcsi) //3D Coordinate transformation for vertex sorting 
24:  Face List of Qi ←index of Pcsi 
25:  return Vertex-Face List of Qi 
26: end function 
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4. Design Cuttable Big Blocks 
In order to realize a high efficiency of cutting, we propose a strategy including a set 

of reasonable cutting schemes to ensure a large amount of cutting materials with a shorter 
cutting time. The cost of one cut is the MRR (i.e., the ratio of removal block volume to 
cutting time) originated by the saw disc intersecting with 1iQ − . Our objective is to find a 
series of cuts whose total cost–AMRR is relatively large. First, in order to obtain a large 
material removal amount, according to the geometrical characteristics of the symmetric 
convex bounding box and the BS, the removal vertices of the CPH are searched whose 
distance from the surface of the BS is at maximum. The direction is regarded as the normal 
vector of the CP for each cut. After that, the CP is constructed based on the extracted nor-
mal vector at the corresponding tangent point on the surface of the BS. It is noted that, in 
this process, to ensure a small machining allowance and no overcut at the same time, the 
data amount of the BS saved in the triangular mesh format with a certain accuracy is not 
optimistic. In particular, due to the increase in the convex vertices after being cut again 
and again, the search process causes a problem by requiring a large amount of calculation, 
thus increasing the burden of searching. The octree decomposition of the 3D model to 
reduce the computational complexity has been considered in many applications [18–20], 
such as image processing, collision detection algorithms, mesh generation procedures, 
and so on, which allows the search time to be easily reduced. For this reason, for each 
cutting, the algorithm of the octree partition is introduced to divide the OBB and BS into 
subdivisions at the same time, in order to search for the vertices of the CPH that are to be 
removed, which will reduce the load of the calculation and increase the speed and the 
search efficiency. 

4.1. Octree Space Partition 
To build an octree for the given set of 3D mesh points in the geometric space, firstly, 

it is necessary to decide the root node, which can be defined as an OBB. Then, we can 
subdivide it into multi-level equally sized cubes, called octants as shown in Figure 5, 
where each cube region in the space is a node of the octree [18,21]. Different from the 
binary tree, in which each node has two branches, each node of the octree has eight 
branches. The octree representation of 3D objects recursively subdivides the root cubic 
data into eight sub-cube arrays. 

Based on the above description, we need to build a compact OBB wrapping the BS 
with a reasonable machining allowance. Generally, the size of the blank workpiece is se-
lected as the size of the OBB. From this point, a compact CPH MQ , bounding the target 
BS, can be cut out from the blank workpiece (box). Therefore, we obtain the root node of 
the octree, which contains a data set PΣ  consisting of all points of the blank workpiece 
and spherical shell of the BS. Then, we calculate the geometrical centroid ( ), ,bc bc bcx y z  of 

the blank workpiece, which overlaps the center of the BS. Based on this, PΣ  can be gen-
erally decomposed. The subdivision nodes of the octree are recursively divided along the 
three coordinate axes according to the octree depth, which are determined according to 
the labeled sub-cube, while any point ( ), ,s s sP x y z  of the data set are subdivided into a 

different sub-cube according to the coordinate location. When the number of the octree 
level increases, the cost of the octree storage occupation and node query time consump-
tion will also increase. Comprehensively considering the factors of the search efficiency-
and node query time in this paper, an octree with a depth of two levels and eight sub-
spaces is established, which subdivides all the data in the data set into eight groups, as-
signing the node cubes ( 1,2,...,8)oG o =  of the subdivision depending on the coordinate 
range, respectively, as in Equation (3). Since each octree node has eight branches, it is con-
venient to number a child node using an appropriate index ranging from one to eight. 
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This index denotes the subregion covered by each child. An example of the space partition 
of a BB and BS is shown in Figure 6, which is used to reduce the calculation amount for 
searching in the subdivision region. The data points in each sub-cube are shown in a dif-
ferent color. For complex cases of octrees with many levels, we can divide subdivision by 
discussing solid angles distributed in a corresponding space region.  
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Figure 5. Schematic diagram of space partition. 

 
Figure 6. Space partition of the BB and BS. 

4.2. Construct Cutting Plane 
To achieve a short total cutting time, under the principle of “cutting big blocks as few 

times as possible” in the cutting process, we construct a series of CPs to ensure that the 
material amount is removed as much as possible. The idea is to intuitively remove the 
most convex vertex of the convex blocks from a practical point of view. Firstly, the maxi-
mum distance maxid  from the vertex of the parent CPH 1iQ −  to the surface of the BS can 
be found. On the basis of Section 4.1, we can subdivide the vertices of 1iQ −  into the sub-

cube region oG  by the octree algorithm. Then, each od  in the sub-cube oG  can be fur-

ther calculated, where od  is defined as the distance of a normal vector on the BS to the 

vertex of 1iQ −  in the oG . As shown in Figure 7, from the schematic diagram of cutting, 
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we can see a data point on the surface of the BS is represented as tiP , and a corresponding 
vertex of 1iQ −  is represented as viP , where the normal vector of the tangent plane at tiP  

is ti viP P


 and the distance ti viP P  is od  in oG . Choosing the maximum value of { }od  as 

the cutting thickness maxid  of the removal block, in that way the tangent plane of the BS 

at the corresponding tiP  is selected as the CP iπ . ti viP P


 indicates ( , , )i i i iN A B C  also. 
The coefficient of iπ  in Equation (1) can be calculated based on the point viP  or tiP  

and normal vector ( , , )i i i iN A B C . For instance, a CP iπ  is shown in Figure 7 constructed 

in the sub-cube region 4G . The cutting along iπ  will produce a big block removal effect 
by adjusting the orientation of the disc saw. Accordingly, using the CPH-updating algo-
rithm of Section 3, the child CPH iQ  can be obtained. 
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Figure 7. Diagram of constructing CP. 

4.3. Calculate Material Removal Volume (MRV) 
Some methods have been proposed to calculate the volume of the CPH [16,22,23]. 

Combining these, we introduce a volume calculation method using vertex coordinates 
and face information. As above mentioned, the vertices of the removal block are 

}{ 1 2= , ,ri ri ri rinP P P P  and { }1 2, ,csi csi csi csihP P P P=  ; nevertheless, for the convenience of de-

scribing the calculation of the volume of the block to be removed, riQ , we assume it has 

ln  polygonal faces 1 2, , , ,r r rlS S S   each with a different amount of qn  vertices 

1 2, , , ,r r rqP P P  . The simplest contour of riQ  is a pyramid feature. If riQ  is not a pyra-

mid, we can decompose the polyhedron riQ  into multiple pyramids rilQ  with a com-
mon tip pO  in a geometrical centroid of riQ  as shown in Figure 8. After that, to obtain 

the volume of the pyramid, if rlS  is not a triangle, we can take the polygon rlS  and de-
compose it into triangles from any vertex as a common vertex 1rP . The vertices 

1 , 1 ,, ,r r q r qP P P−  of each triangle are kept in a CCW order to the triangles with respect to their 
outward direction. Moreover, the triangle arrays are stored in the vertex order of CPG. 
Eventually, a pyramid rilQ  is decomposed into multiple tetrahedrons 1 , 1p r r q rqO P P P−−  

with a common pyramid tip. When pO  is assigned at the origin, one-sixth of the mixed 

product of 1 , 1 ,, ,p r p r q p r qO P O P O P−

  
, namely, one-sixth of the dot product between the normal 

vector of each triangle ( )1 , 1 ,, ,r r q r qP P P−Δ  and any vector of 1 , 1 ,, ,p r p r q p r qO P O P O P−

  
, can be de-

noted as the determinant 
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which is the volume of 1 , 1p r r q rqO P P P−− . Thus, by the vector method the following volume 

equation of the pyramid rilQ  for the face rlS  can be derived 

( ) ( )1 , 1 1 , 1 ,
2 2

1=
6

q q

rl

n n

S p r r q rq r r q r q
q q

V V O P P P D P P P− −
= =

=   (4)

Obviously, the volume equation of the polyhedron riQ  is 

( )1 , 1 ,
1 1 2

1=
6

ql l

rl

nn n

ci S r r q r q
l l q

V V D P P P−
= = =

=   (5)

From the above, we can see that it is easier to calculate the CPH volume from the face 
index and all vertex information on the faces with less calculation. Of course, one can also 
finally calculate the total removal volume directly from the remaining block. Here, in or-
der to observe each cutting, we choose to analyze the removal block each time. 

3rP

2rP
1rP

rqP

1rqP −

1rS

pO

1rP
2rP

3rP
1rqP −

rqP

pO

1rS

...

 
Figure 8. CPH decomposition and face decomposition. 

5. Optimize Cutting Time 
When the material removal volume is constant, the shorter the cutting time is and 

the greater the MMR is. In order to minimize the cutting time, we summarize the cutting 
process into the second problem finding the shortest path. By analyzing the geometrical 
characteristics of the CPG, a path optimization algorithm to determine the feed direction 
and cutting point is proposed. 

5.1. Time Optimization Model 
By cutting with a guillotine style accompanying the aforementioned strategy, the 

CPH is completely separated into two convex blocks: one is the removal block riQ  and 
the other is the child CPH 1iQ − . To sum each ciV  of riQ , we can obtain the total MRV. 
Due to the cutting block being relatively big, we establish the objective function with min-
imum cutting time as follows 
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where M  is the aforementioned number of cuts, generated automatically according to 
the required material removal percentage (MRP). Ti is the time consumed at ith cutting. 
Li is the feed stroke along each cutting path. fv  is the feed speed, which is normally set 

as a constant. R  is the radius of the circular saw blade. 0mF  represents a face of the 0Q , 
and m is the face number of the initial blank box, selected as six here. iS  is the intersection 
CPG generated by the ith cut. The width W of iS  needs to be calculated by the optimiza-
tion algorithm. 

Assuming the time consumption of the motion in space is ignored, the cutting time 
is only related to the feed stroke along the intersection with the CPG, which is decided by 
the geometrical characteristics of the CPG satisfying the shape constraint of the circular 
saw at the same time. 

5.2. Intersection CPG Analysis 
It can be seen from Section 5.1 that in order to obtain the shortest cutting time, it is 

necessary to seek out the shortest cutting path on the CPG. Through analysis, it can be 
found that here the path is generally characterized by the span of the CPG along a certain 
direction. Therefore, confirming the shortest cutting path can be worked out using the 
minimum span (i.e., width) of the CPG [24]. In recent years, the width calculation of the 
CPG has been widely used in collision detection and other calculations [19], but few re-
searches and applications have explored its use in the field of machining. For the intersec-
tion CPG iS , its width is defined as the minimum distance between the supporting par-
allel lines of iS , decided by the vertex–edge (V–E) pairs here, in which the relative edge 
is formed by the intersection of two faces. The vertices set of the CPG is 

{ } , 1csi csijP P j h= =  . The width calculation is as follows. Utilizing the supporting parallel 

lines, the V–E pairs can be scanned to obtain the maximum distance { }, 1maxj j jD D +=  

between any vertices of csiP  and one edge or extended edge , 1j jE +  in O(h) time for each 
edge, which is the span of one edge. Once the scan is completed, we can compare each of 
these pairs{ }jD   and note the smallest span distances, { }min jD . As a result, that dis-

tance is the width iW S（ ）, whose direction decides an initial feed direction. Here, the cor-
responding vertex is represented by djP , and the corresponded edge is wE . For instance, 

in Figure 9, for the intersection CPG 1 2 3 4cs cs cs csP P P P , the width is 4,3( )D W . 
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5.3. Cutting Path Optimization 
According to the analysis of the CPG in Section 5.2, if the width direction of the CPG 

is used as the cutting feed direction, and the relative vertex and the perpendicular point 
on the edge are chosen as the starting point and ending point of the cutting, respectively, 
then sometimes, the cutting requirements are unable to be met. In other words, the cutting 
range of the circular saw is not able to cover the whole CPG area without a guillotine cut; 
an example as shown in Figure 10a. Therefore, a bounding rectangle method of the CPG 
is proposed to determine the feed direction and starting point for the cut, as shown in 
Figure 10b, where the black dash line is the bounding rectangle of the CPG, and the red 
dash line demonstrates the feed direction. From the length wE  and width W of the 
bounding rectangle, we can calculate its centroid rO . Along rO , the vertical line to wE  
can be drawn, intersecting wE  with point sP , and intersecting the opposite edge with 
point eP . sP  and eP  are chosen as the starting point and the ending point of the cut re-
spectively. The vector direction from sP  to eP  is the optimal feeding direction here. If 
the cutting with eP  fails to cut through the block, a certain cut depth compensation 
should be considered to recalculate eP , which can be found by calculating the intersection 

chord length between the edge e djP P  and the circular saw, achieved by using the bottom 
vertices of the polygon. 
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Figure 10. Feed direction of cutting. (a) Feed direction along W; (b) feed direction along s eP P
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6. Simulation Results and Analysis 
6.1. Simulation Verification 

A minimum BS of a three-dimensional penguin is used as the target for the block 
cutting simulation. The triangular mesh model of the BS with a radius 200 mm is gener-
ated by using CAD/CAM software, which is stored in STL format. All of the data is loaded 
on to the MATLAB platform, which is used to verify the proposed strategy, thus benefit-
ing from the powerful computing and drawing ability of MATLAB. In order to avoid any 
impact on the finished machined product due to the brittle fracturing of materials in the 
machining process, and ensuring a certain machining allowance, we select a 400 × 400 × 
400 mm3 blank box, considering that polyhedron is able to be cut by a large enough circu-
lar saw. To verify the proposed strategy for the general cutting condition, the sawing pa-
rameters are given as follows: a rotation speed of the saw blade is 1400 r/min; the radius 
of the circular saw blade is 400 mm; the feed speed is set to 180 mm/min. When the MRP 
reaches 85% of the total materials that should be removed, the cutting search stops. Im-
porting the data set of the BS, the data of the spatial region is subdivided according to the 
octree algorithm in Section 4.1. For contrast, the simulation experiments are carried out 
with and without the octree partition. The search time after data partition is reduced by 
31.64% compared with that without data partition. Some effect graphs of the workpiece’s 
dynamic reconstruction during cutting are shown in Figure 11, resulting in a total of 19 
cuts. It can be seen from Figure 11c that the contour of the CPH after cutting is closer to 
the target BS. Through the visualization analysis, it can be seen that there is no overcutting 
phenomenon in the sawing process, and the proposed methods are feasible. Figure 12 
shows the cutting time after optimization, which is less than or equal to that before opti-
mization. Moreover, we can find that the total cutting time after path optimization is about 
21.3 min, which is about 11.33% less than that without optimization. In Figure 13, the MRV 
based on the maximum removal thickness and MRR are shown, where, in order to show 
these clearly, the blue solid line and red dash line have been employed to illustrate them 
with different labels on the left and right longitudinal axes, respectively. One can see that 
after nine cuts, more than 70% of MRP has been reached. After this the increase in MRP 
becomes slower with the increase in cutting time, i.e., the removal volume of each cut 
becomes smaller. This is an inevitable result of block cutting, in which each cut leads to 
the rough blank moving closer and closer to the target BS. By balancing the cutting times 
and the removal volume, in this study, we targeted 85% of the total MRP according to 
some engineering experience in the milling process [5] and the characteristics of the saw 
disc. After 19 cuts, the MRV reaches mm7 32.6 10× , accounting for about 85.34% of the 
total blank materials that should be removed. Accordingly, there is no need to set a higher 
desired MRP for rough cutting. Through the further analysis of Figure 13 (the 12th–14th 
cuts bring an increase in MRV), it can be seen that the cutting algorithm based on the 
maximum thickness of the removal block cannot completely ensure the complete removal 
of the material for each cutting, but it is nearly at maximum, which is why we also call 
this process the relatively big block cutting method. The reason that this phenomenon 
arises is because the contour of the removal block becomes more and more irregular with 
the increase in the number of cuts. Therefore, the maximum thickness of the removed 
block materials only reflects a relatively big block not the maximum removal amount. 
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Figure 11. Dynamic reconstruction effect of CPH. (a) 1st cutting; (b) 8th cutting; (c) 19th cutting. 

 
Figure 12. Cutting time. 

 
Figure 13. MRV and MRP. 

Additionally, an accurate simulation model of the NC (numerical control) machine 
tool is established with a 5-axis cutting characteristic and circular saw blade as a simula-
tion platform in a Vericut environment. Given the same cutting parameters as above men-
tioned, the cutting simulations are performed by a generated G code on the NC cutting 
machine model to verify the proposed cutting strategy. Some cutting results are shown in 
Figure 14. The cutting time displayed in the Vericut environment is about 23.4 min. Ignor-
ing the travel time in space, it is almost the same as the cutting time in the MATLAB plat-
form. Moreover, compared with the reconstructed CPH of each cut in the MATLAB plat-
form, the features of each CPH processed by the 5-axis NC machine tool in the Vericut 
platform are roughly the same in shape and size, which further verifies the effectiveness 
and feasibility of the cutting strategy for removing blocks proposed in the paper. 
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Figure 14. Cutting effect in Vericut platform. (a) 1st cutting; (b) 8th cutting; (c) 19th cutting. 

6.2. Comparison of Sawing and Milling 
For the removal of materials during stone rough machining, a milling mode is often 

employed in the newest automatic level. In order to verify the effectiveness of the block 
cutting strategy proposed in the paper, the milling mode with a high capacity during 
stone rough machining is chosen as a comparison. The milling parameters are given as 
follows [5]: a rotation speed of 6000 r/min; a milling depth of 2m mpa = ; a milling width 

of 30mmwa = , which is the tool diameter of a diamond grinding wheel; a feed speed of 
mm4000 / minfv = . For the same MRV 7 32.6 10 mm× , the milling time is 108.4 min and 

the AMRR is 5 32.4 10 mm /min× . In this case, compared with the cutting results, it can be 
seen that the AMRR of the cutting strategy is more than five times that of the milling. The 
main reason of the difference is that milling is limited by its processing mode and milling 
depth. For the case of removing the materials of a big block, layered milling must be 
adopted, which consumes a lot of time and produces dust. However, the block sawing 
method with a saw blade can directly carry out the cutting operation with a large feed 
stroke and a large block thickness; thereby, the efficiency can be significantly improved. 
For special shapes, if a higher cutting performance saw blade [25] is employed, AMRR 
will be improved further. More tool cases with different machining capacities in the sim-
ulation will be performed in the future. 

7. Conclusions and Future Scope 
To address block cutting with a saw disc in the 3D space usually needs with a lot of 

hard labor and time. This article has addressed a series of works concerned with analyzing 
the geometrical characteristics of convex polyhedrons and convex polygons in order to 
complete block cutting automatically and rapidly. This has made efficient and continuous 
block cutting available. The optimization strategy for cutting a convex polyhedron out of 
a blank box has been presented by combining computational geometric theory and com-
puter graphics knowledge. Dynamic cutting data management has been implemented 
with the vertex–face polyhedron data structure, which means the convex polyhedron 
model reconstruction is completed in the updating process. A range of cutting planes with 
the maximum thickness of the removal block have been constructed, and the space parti-
tion with the octree algorithm has been used in the process of searching for the vertices to 
be removed, which can reduce the search time. The geometrical characteristics of the con-
vex polygon cutting plane generated by the cutting intersection have also been analyzed, 
and the method for an optimized cutting time has been presented. Finally, the suboptimal 
solution of the average material removal rate at the rough machining stage has been quan-
titatively analyzed. Simulation and comparison results in MATLAB and the Vericut plat-
form have been provided to demonstrate the effectiveness of the proposed strategy. In 
particular, the Vericut platform is able to reflect the real processing environment. We have 
investigated a block cutting strategy with a practicable automatic strategy for the first 
time. Realistically, it is necessary to utilize multi axis machine tools or robots with good 
capacity.  
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In this work, our discussion concentrated on the problem of cutting a symmetric con-
vex polyhedron with a bounding sphere target. However, there are some directions that 
can be extended further: (i) While we constructed cutting planes, we selected the subop-
timal solutions with relatively big blocks and high efficiency. This leads us to think deeply 
about the optimal methods for constructing a cuttable maximum block for each cutting; 
(ii) as well as typical bounding sphere targets, we can explore the changing factors that 
affect the AMRR when cutting the symmetric convex polyhedron with bounding ellipsoid 
targets; (iii) as only one high capacity milling comparison has been completed, some dif-
ferent saw disc parameters and milling modes can be analyzed to obtain a more general 
conclusion of the higher MRR with block cutting under a similar mechanical level; (iv) 
instead of the bounding sphere and the bounding ellipsoid, we can explore cutting strat-
egies according to the target polyhedrons of the compact bounding convex or nonconvex 
contours of special-shaped products.  

Finally, we hope this work can stimulate research and applications in this field. 
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