9 research outputs found

    Zerumbone, a Southeast Asian Ginger Sesquiterpene, Induced Apoptosis of Pancreatic Carcinoma Cells through p53 Signaling Pathway

    Get PDF
    Pancreatic carcinoma is one common cancer with gradually increasing incidence during the past several decades. However, currently the candidate drugs to suppress pancreatic cancer remain lacking. This research was carried out to investigate if zerumbone, a natural cyclic sesquiterpene isolated from Zingiber zerumbet Smith, will produce the anticancer effects on pancreatic carcinoma cell lines. The results showed that zerumbone concentration, and time, dependently produced inhibitory actions on cell viability of PANC-1 cells. In addition, Hoechst 33342, AO/EB, TUNEL staining, and caspase-3 activity assay further showed that zerumbone induced apoptosis of PANC-1 cells. The expression of p53 protein was markedly upregulated, and the p21 level was also obviously elevated in zerumbone-treated PANC-1 cells. Moreover, ROS production was increased by about 149% in PANC-1 cells treated by zerumbone 30 μM. Zerumbone also produced the same antitumor activity in pancreatic carcinoma cell lines SW1990 and AsPC-1. In summary, we found that zerumbone was able to induce apoptosis of pancreatic carcinoma cell lines, indicating to be a promising treatment for pancreatic cancer

    Is Childhood General Anesthesia Exposure An Etiological Contributor to Cognitive Impairment?

    No full text
    General anesthesia is necessary for patients to undergo surgery and invasive procedures. However, numerous preclinical studies have demonstrated widespread developmental neurotoxicity of the commonly used anesthetics and sedatives for the immature brain. Clinical studies also suggest a strong correlation between childhood anesthesia exposure and subsequent behavioral or cognitive impairment in adulthood. These findings have attracted increasing attention of anesthesiologists, pediatricians, and caregivers about the safety of anesthesia exposure in children, especially during early childhood. Herein, the aim of this review was to present the molecular mechanism of general anesthesia and its effects on the developing brain and introduce the recent clinical evidence of changes in cognition function post-childhood general anesthesia exposure. More importantly, some of the spots will be importantly discussed to scrutinize the phenomena; only in this way, it may help minimize or eliminate relevant risk factors

    Solution-Processed Highly Conductive PEDOT:PSS/AgNW/GO Transparent Film for Efficient Organic-Si Hybrid Solar Cells

    No full text
    Hybrid solar cells based on n-Si/poly­(3,4-ethylenedioxythiophene):poly­(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique “sandwich” structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6 × 10<sup>–3</sup> Ω<sup>–1</sup>, which was even higher than that of sputtered indium tin oxide electrode (6.6 × 10<sup>–3</sup> Ω<sup>–1</sup>). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (<i>V</i><sub>bi</sub>) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology

    Multifunctional Additive CdAc<sub>2</sub> for Efficient Perovskite-Based Solar Cells

    No full text
    Polycrystalline perovskite films fabricated on flexible and textured substrates often are highly defective, leading to poor performance of perovskite devices. Finding substrate-tolerant perovskite fabrication strategies is therefore paramount. Herein, this study shows that adding a small amount of Cadmium Acetate (CdAc2) in the PbI2 precursor solution results in nano-hole array films and improves the diffusion of organic salts in PbI2 and promotes favorable crystal orientation and suppresses non-radiative recombination. Polycrystalline perovskite films on the flexible substrate with ultra-long carrier lifetimes exceeding 6 µs are achieved. Eventually, a power conversion efficiency (PCE) of 22.78% is obtained for single-junction flexible perovskite solar cells (FPSCs). Furthermore, it is found that the strategy is also applicable for textured tandem solar cells. A champion PCE of 29.25% (0.5003 cm2) is demonstrated for perovskite/silicon tandem solar cells (TSCs) with CdAc2. Moreover, the un-encapsulated TSCs maintains 109.78% of its initial efficiency after 300 h operational at 45 °C in a nitrogen atmosphere. This study provides a facile strategy for achieving high-efficiency perovskite-based solar cells.</p
    corecore