2,947 research outputs found

    A quantum hydrodynamical description for scrambling and many-body chaos

    Get PDF
    Recent studies of out-of-time ordered thermal correlation functions (OTOC) in holographic systems and in solvable models such as the Sachdev-Ye-Kitaev (SYK) model have yielded new insights into manifestations of many-body chaos. So far the chaotic behavior has been obtained through explicit calculations in specific models. In this paper we propose a unified description of the exponential growth and ballistic butterfly spreading of OTOCs across different systems using a newly formulated "quantum hydrodynamics," which is valid at finite â„Ź\hbar and to all orders in derivatives. The scrambling of a generic few-body operator in a chaotic system is described as building up a "hydrodynamic cloud," and the exponential growth of the cloud arises from a shift symmetry of the hydrodynamic action. The shift symmetry also shields correlation functions of the energy density and flux, and time ordered correlation functions of generic operators from exponential growth, while leads to chaotic behavior in OTOCs. The theory also predicts an interesting phenomenon of the skipping of a pole at special values of complex frequency and momentum in two-point functions of energy density and flux. This pole-skipping phenomenon may be considered as a "smoking gun" for the hydrodynamic origin of the chaotic mode. We also discuss the possibility that such a hydrodynamic description could be a hallmark of maximally chaotic systems.Comment: 48 pages, 9 figures. v2: references added, various clarifications made including an expanded discussion of predictions in the introduction and an expanded discussion of four-point functions, v3: journal versio

    A Monolithically Fabricated Combinatorial Mixer for Microchip-Based High-Throughput Cell Culturing Assays

    Get PDF
    We present an integrated method to fabricate 3- D microfluidic networks and fabricated the first on-chip cell culture device with an integrated combinatorial mixer. The combinatorial mixer is designed for screening the combinatorial effects of different compounds on cells. The monolithic fabrication method with parylene C as the basic structural material allows us to avoid wafer bonding and achieves precise alignment between microfluidic channels. As a proof-of-concept, we fabricated a device with a three-input combinatorial mixer and demonstrated that the mixer can produce all the possible combinations. Also, we demonstrated the ability to culture cells on-chip and performed a simple cell assay on-chip using trypan blue to stain dead cells

    H\u3csup\u3e+\u3c/sup\u3e- and Na\u3csup\u3e+\u3c/sup\u3e- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga \u3cem\u3eChlamydomonas\u3c/em\u3e

    Get PDF
    Although microtubules are known for dynamic instability, the dynamicity is considered to be tightly controlled to support a variety of cellular processes. Yet diverse evidence suggests that this is not applicable to Chlamydomonas, a biflagellate fresh water green alga, but intense autofluorescence from photosynthesis pigments has hindered the investigation. By expressing a bright fluorescent reporter protein at the endogenous level, we demonstrate in real time discreet sweeping changes in algal microtubules elicited by rises of intracellular H+ and Na+. These results from this model organism with characteristics of animal and plant cells provide novel explanations regarding how pH may drive cellular processes; how plants may respond to, and perhaps sense stresses; and how organisms with a similar sensitive cytoskeleton may be susceptible to environmental changes

    MetaGS: an accurate method to impute and combine SNP effects across populations using summary statistics

    Get PDF
    Background Meta-analysis describes a category of statistical methods that aim at combining the results of multiple studies to increase statistical power by exploiting summary statistics. Different industries that use genomic prediction do not share their raw data due to logistic or privacy restrictions, which can limit the size of their reference populations and creates a need for a practical meta-analysis method. Results We developed a meta-analysis, named MetaGS, that duplicates the results of multi-trait best linear unbiased prediction (mBLUP) analysis without accessing raw data. MetaGS exploits the correlations among different populations to produce more accurate population-specific single nucleotide polymorphism (SNP) effects. The method improves SNP effect estimations for a given population depending on its relations to other populations. MetaGS was tested on milk, fat and protein yield data of Australian Holstein and Jersey cattle and it generated very similar genomic estimated breeding values to those produced using the mBLUP method for all traits in both breeds. One of the major difficulties when combining SNP effects across populations is the use of different variants for the populations, which limits the applications of meta-analysis in practice. We solved this issue by developing a method to impute missing summary statistics without using raw data. Our results showed that imputing summary statistics can be done with high accuracy (r > 0.9) even when more than 70% of the SNPs were missing with a minimal effect on prediction accuracy. Conclusions We demonstrated that MetaGS can replace the mBLUP model when raw data cannot be shared, which can lead to more flexible collaborations compared to the single-trait BLUP model
    • …
    corecore