666 research outputs found

    How Stable is Democracy?

    Get PDF
    The structure of communication networks can be more or less “democratic”: networks are less democratic if (a) communication is more limited in terms of characteristic degree and (b) is more tightly channeled to a few specifc nodes. Together those measures give us a two-dimensional landscape of more and less democratic networks. We track opinion volatility across that landscape: the extent to which random changes in a small percentage of binary opinions at network nodes result in wide changes across the network as a whole. If wide and frequent swings of popular opinion are taken as a mark of instability, democratic communication networks prove far more stable than anti-democratic ones. In a fnal section, we consider the democratic or anti-democratic character of networks that respond to volatility by rewiring at random, in a search for community, or in a search for a leader

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1,2,3,4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction

    ETU-Net: efficient Transformer and convolutional U-style connected attention segmentation network applied to endoscopic image of epistaxis

    Get PDF
    Epistaxis is a typical presentation in the otolaryngology and emergency department. When compressive therapy fails, directive nasal cautery is necessary, which strongly recommended operating under the nasal endoscope if it is possible. Limited by the operator's clinical experience, complications such as recurrence, nasal ulcer, and septum perforation may occur due to insufficient or excessive cautery. At present, deep learning technology is widely used in the medical field because of its accurate and efficient recognition ability, but it is still blank in the research of epistaxis. In this work, we first gathered and retrieved the Nasal Bleeding dataset, which was annotated and confirmed by many clinical specialists, filling a void in this sector. Second, we created ETU-Net, a deep learning model that smartly integrated the excellent performance of attention convolution with Transformer, overcoming the traditional model's difficulties in capturing contextual feature information and insufficient sequence modeling skills in picture segmentation. On the Nasal Bleeding dataset, our proposed model outperforms all others models that we tested. The segmentation recognition index, Intersection over Union, and F1-Score were 94.57 and 97.15%. Ultimately, we summarized effective ways of combining artificial intelligence with medical treatment and tested it on multiple general datasets to prove its feasibility. The results show that our method has good domain adaptability and has a cutting-edge reference for future medical technology development

    Identifying distinctive tissue and fecal microbial signatures and the tumor-promoting effects of deoxycholic acid on breast cancer

    Get PDF
    IntroductionA growing body of evidence indicates that the dysbiosis of both mammary and intestinal microbiota is associated with the initiation and progression of breast tumors. However, the microbial characteristics of patients with breast tumors vary widely across studies, and replicable biomarkers for early-stage breast tumor diagnosis remain elusive.MethodsWe demonstrate a machine learning-based method for the analysis of breast tissue and gut microbial differences among patients with benign breast disease, patients with breast cancer (BC), and healthy individuals using 16S rRNA sequence data retrieved from eight studies. QIIME 2.0 and R software (version 3.6.1) were used for consistent processing. A naive Bayes classifier was trained on the RDP v16 reference database to assign taxonomy using the Vsearch software.ResultsAfter re-analyzing with a total of 768 breast tissue samples and 1,311 fecal samples, we confirmed that Halomonas and Shewanella were the most representative genera of BC tissue. Bacteroides are frequently and significantly enriched in the intestines of patients with breast tumor. The areas under the curve (AUCs) of random forest models were 74.27% and 68.08% for breast carcinoma tissues and stool samples, respectively. The model was validated for effectiveness via cohort-to-cohort transfer (average AUC =0.65) and leave-one-cohort-out (average AUC = 0.66). The same BC-associated biomarker Clostridium_XlVa exists in the tissues and the gut. The results of the in-vitro experiments showed that the Clostridium-specific-related metabolite deoxycholic acid (DCA) promotes the proliferation of HER2-positive BC cells and stimulates G0/G1 phase cells to enter the S phase, which may be related to the activation of peptide-O-fucosyltransferase activity functions and the neuroactive ligand–receptor interaction pathway.DiscussionThe results of this study will improve our understanding of the microbial profile of breast tumors. Changes in the microbial population may be present in both the tissues and the gut of patients with BC, and specific markers could aid in the early diagnosis of BC. The findings from in-vitro experiments confirmed that Clostridium-specific metabolite DCA promotes the proliferation of BC cells. We propose the use of stool-based biomarkers in clinical application as a non-invasive and convenient diagnostic method

    Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans

    Get PDF
    The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.</p
    • …
    corecore