291 research outputs found

    Maize-soybean intercropping improved maize growth traits by increasing soil nutrients and reducing plant pathogen abundance

    Get PDF
    IntroductionMaize (Zea mays L.)–soybean (Glycine max L.) intercropping has been widely utilized in agricultural production due to its effectiveness in improving crop yield and nutrient use efficiency. However, the responses of maize rhizosphere microbial communities and the plant pathogen relative abundance to maize growth traits in maize-soybean intercropping systems with different chemical nitrogen fertilizer application rates remain unclear.MethodsIn this study, a field experiment was conducted, and the bacterial and fungal communities of maize rhizosphere soils in maize-soybean intercropping systems treated with different N fertilization rates were investigated using Illumina NovaSeq sequencing. Maize growth traits, soil physicochemical properties and soil enzyme activities were also examined.Results and discussion:We found that intercropping and N fertilizer treatments strongly influenced soil microbial diversity, structure and function. The PLSPM (partial least squares path modeling) confirmed that soil nutrients directly positively affected maize biomass and that intercropping practices indirectly positively affected maize biomass via soil nutrients, especially NH4+-N. Intercropping agronomic approaches also improved maize growth traits by reducing the plant pathogen abundance, and the relative abundance of the plant pathogen Trichothecium roseum significantly decreased with intercropping treatments compared to monocropping treatments. These results confirmed the benefits of maize-soybean intercropping treatments for agricultural production

    Molecular epidemiology of dengue viruses in southern China from 1978 to 2006

    Get PDF
    To investigate molecular epidemiology of dengue viruses (DENV) in southern China, a total of 14 dengue isolates were collected in southern China during each epidemic year between 1978 and 2006 and their full-length genome sequences were obtained by using RT-PCR method. The E gene sequences from additional 6 dengue fever patients in Guangzhou in 2006 were also obtained by using RT-PCR method. Combined with DENVs sequences published in GenBank, phylogenetic analysis and recombination analysis were performed. One hundred and twenty-five E gene sequences and 60 complete genome sequences published in the GenBank were also involved. Phylogenetic analysis showed that there was a wide genetic diversity of DENVs isolated in southern China. DENV-1 strains exist in almost all of the clades of genotype I and IV except the Asia 1 clade of genotype I; DENV-2 stains are grouped into four of the five genotypes except American genotype. DENV-4 strains are grouped into 2 genotypes (I and II). Phylogenetic analysis also showed that all DENV-4 isolates and two DENV-2 isolates were closely related to the prior isolates from neighboring Southeast Asia countries. The DENV-1 strain isolated during the 2006 epidemic is highly homologous to the strains isolated during the 2001 epidemic

    Neutrophil extracellular traps promote bronchopulmonary dysplasia-like injury in neonatal mice via the WNT/β-catenin pathway

    Get PDF
    BackgroundBronchopulmonary dysplasia (BPD) is one of the most common and severe chronic diseases in preterm infants. Premature infants are susceptible to BPD due to immature lungs and adverse perinatal episodes of infection, hyperoxia, and mechanical ventilation.MethodsNeutrophils are the first line of host defence, and the release of neutrophil extracellular traps (NETs) is an important strategy to immobilize and kill invading microorganisms. This study examined whether NETs were associated with BPD in preterm infants and contributed to hyperoxia-induced lung injury in neonatal mice via the WNT/β-catenin pathway.ResultsIn this study, we found that preterm infants with BPD had higher levels of NETs in their tracheal aspirates than those without BPD. Neonatal mice treated with NETs after birth exhibited BPD-like changes in their lungs. Furthermore, the levels of Aquaporin 5 (AQP5) and surfactant-associated protein C (SPC), which represent alveolar differentiation and development, were significantly lower than those in the controls. The WNT/β-catenin pathway is one of the most well-known signalling pathways involved in lung growth. We found that the expression of the target genes c-MYC, cyclin D, and vascular endothelial growth factor (VEGF) and the important proteins WNT3a and β-catenin significantly decreased. Moreover, heparin, which is a NET inhibitor, attenuated changes in gene and protein expression, thereby attenuating BPD-like changes.DiscussionThis finding indicates that NETs are associated with BPD and can induce BPD-like changes in neonatal mice via the WNT/β-catenin pathway

    Teleporting a quantum state in a subset of the whole Hilbert space

    Full text link
    We investigate the lower bound of the amount of entanglement for faithfully teleporting a quantum state belonging to a subset of the whole Hilbert space. Moreover, when the quantum state belongs to a set composed of two states, a probabilistic teleportation scheme is presented using a non-maximally entangled state as the quantum channel. We also calculate the average transmission efficiency of this scheme.Comment: 4 pages, no figur

    Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets

    Get PDF
    The connection between inflammation and tumourigenesis has been well established. However, the detailed molecular mechanism underlying inflammation-associated tumourigenesis remains unknown because this process involves a complex interplay between immune microenvironments and epithelial cells. To obtain a more systematic understanding of inflammation-associated tumourigenesis as well as to identify novel therapeutic approaches, we constructed a knowledge-based network describing the development of colitis-associated colon cancer (CAC) by integrating the extracellular microenvironment and intracellular signalling pathways. Dynamic simulations of the CAC network revealed a core network module, including P53, MDM2, and AKT, that may govern the malignant transformation of colon epithelial cells in a pro-tumor inflammatory microenvironment. Furthermore, in silico mutation studies and experimental validations led to a novel finding that concurrently targeting ceramide and PI3K/AKT pathway by chemical probes or marketed drugs achieves synergistic anti-cancer effects. Overall, our network model can guide further mechanistic studies on CAC and provide new insights into the design of combinatorial cancer therapies in a rational manner

    Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>)

    Get PDF
    A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii
    corecore