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Background: Bronchopulmonary dysplasia (BPD) is one of the most common

and severe chronic diseases in preterm infants. Premature infants are susceptible

to BPD due to immature lungs and adverse perinatal episodes of infection,

hyperoxia, and mechanical ventilation.

Methods: Neutrophils are the first line of host defence, and the release of

neutrophil extracellular traps (NETs) is an important strategy to immobilize and

kill invading microorganisms. This study examined whether NETs were

associated with BPD in preterm infants and contributed to hyperoxia-induced

lung injury in neonatal mice via the WNT/b-catenin pathway.

Results: In this study, we found that preterm infants with BPD had higher levels of

NETs in their tracheal aspirates than those without BPD. Neonatal mice treated

with NETs after birth exhibited BPD-like changes in their lungs. Furthermore, the

levels of Aquaporin 5 (AQP5) and surfactant-associated protein C (SPC), which

represent alveolar differentiation and development, were significantly lower than

those in the controls. The WNT/b-catenin pathway is one of the most well-

known signalling pathways involved in lung growth. We found that the

expression of the target genes c-MYC, cyclin D, and vascular endothelial

growth factor (VEGF) and the important proteins WNT3a and b-catenin
significantly decreased. Moreover, heparin, which is a NET inhibitor, attenuated

changes in gene and protein expression, thereby attenuating BPD-like changes.

Discussion: This finding indicates that NETs are associated with BPD and can

induce BPD-like changes in neonatal mice via the WNT/b-catenin pathway.

KEYWORDS

bronchopulmonary dysplasia, neutrophil extracellular traps, hyperoxia, bronchopulmonary
dysplasia-like injury, Wnt/b-catenin pathway
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1 Introduction

Bronchopulmonary dysplasia (BPD) is a leading cause of

chronic respiratory morbidity among survivors of preterm birth

and is associated with the greatest risk for those born at 23–30

weeks. BPD in most premature infants is characterized by fewer but

larger alveoli, mild fibrosis, and persistent inflammation that play

key roles in its pathogenesis. Inflammation can be exacerbated by

several perinatal factors, including mechanical ventilation, exposure

to oxygen, and other sources of oxidants, such as parenteral

nutrition and sepsis (Principi et al., 2018). According to recent

research, innate immunity plays an important role in the

development of BPD (Zaramella et al., 2019).

In 2004, Brinkmann first proposed that neutrophil extracellular

traps (NETs) could be produced to clear extracellular pathogens, in

addition to the traditional method of engulfment and

degranulation. NETs are composed primarily of eDNA (free

DNA), neutrophil elastase (NE), myeloperoxidase (MPO),

histones, and granules (Brinkmann et al., 2004) and are involved

in several inflammatory diseases of the lungs, such as chronic

obstructive pulmonary disease (COPD) and acute lung injury

(Jorch and Kubes, 2017; Söderberg and Segelmark, 2018). Sun

et al. (2020) found that NETs were significantly increased in BPD

rat models and that neutralizing antibodies and heparin could

reduce lung damage by inhibiting NET formation. According to

Davies et al. (2010) NETs in bronchoalveolar lavage were more

active in premature infants with BPD than in those without BPD,

suggesting that NETs might participate and play an important role

in the pathogenesis of BPD (Xu et al., 2020).

According to Davies et al. (2010), NE in bronchoalveolar lavage is

more active in preterm infants with chronic lung disease than in those

without chronic lung disease. NE is an important component ofNETs,

and BPD is an important chronic lung disease. This finding suggests

that NETs may be involved in the pathogenesis of BPD.

WNT/b-catenin signalling is essential for lung development

(Zhang et al., 2012; Frank et al., 2016; Hussain et al., 2017) and was

shown to be downregulated by NE, which is an important

component of NETs in COPD and emphysema (Kneidinger et al.,

2011). However, whether NETs can promote BPD via the WNT/b-
catenin signalling pathway remains unclear. We examined the

relationship between NETs with BPD and examined the effect of

NETs on BPD via WNT/b-catenin.
2 Materials and methods

2.1 Tracheal aspirate collection and
NETs measurement

Tracheal aspirates were collected through a tracheal catheter,

added to 2 times the volume of 0.1% DDT solution, mixed for 15

seconds, diluted 1:1 with phosphate-buffered saline and then

centrifuged at 3,000 × g for 15 min at 4°C. NE and MPO levels in

tracheal aspirate samples were measured with an ELISA kit (Human
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Neutrophil Elastin ELISA Kit, Human MPO ELISA Kit) (Khan

et al., 2019; Thanabalasuriar et al., 2019; Thierry and Roch, 2020).

All experimental procedures were performed according to protocols

approved by the Ethics Committee of Children’s Hospital Affiliated

to Chongqing Medical University.
2.2 Induction, observation, and
quantification of NETs

We collected peripheral venous blood from healthy adult

volunteers with a heparin collection tube to extract neutrophils

with a neutrophil kit (Dömer et al., 2021). All procedures were

carried out in a sterile environment and at room temperature. To

assess the induction of NETs, neutrophils were exposed to 500

nmol/L PMA (phorbol-12-myristate-13-acetate) (Thierry and

Roch, 2020), and NETs were incubated at 37°C and 5% CO2 for 4

h. NETs formation was analysed by using the cell impermeable

dsDNA dye SYTOX™ Green Nucleic Acid Stain (Invitrogen™).

SYTOX Green kinetic analysis of NETs was performed using a

Keyance BZ9000 Microscope (Osaka Keyance, Japan) with a 40×

planar Fluor EL NA0.60 objective (Nikon, Tokyo, Japan). A total of

5×106/L neutrophils in 100 ml and 20 ml of PMA were placed in an

incubator with 5% CO2 at 37°C for 4 h. The concentration of eDNA

was measured with Quant-iT PicoGreen and a double-stranded

DNA Analysis Kit (Thermo P7589).
2.3 Animal models

2.3.1 Determination of NETs in animal models
Wild-type C57BL/6J mice (female: 50 and male: 50) at 6–8

weeks of age were provided by the University Animal Center of

Chongqing Medical Science. All mice were housed in a pathogen-

free cage with ad libitum access to mouse chow and water and a 12 h

light/dark cycle with constant temperature (25 ± 2°C) and 50%

relative humidity. After natural birth, neonatal mice were used as

animal models. All experimental procedures were performed

according to protocols approved by the Experimental Animal

Ethics Committee of Chongqing Medical University [wild-type

C57BL/6J mice (female and male)].

Animal models were established as follows. In the hyperoxia-

induced lung injury group, neonatal mice were exposed to

hyperoxia (85% oxygen) in a sealed cage with continuous O2

monitoring to mimic BPD. Mice in the NET group were treated

with 5 ml/g NETs by nasal drops every 3 days. The mice were treated

with 5 ml/g NETs (0.43 ng/ml eDNA) by nasal drops every 3 days,

injected with heparin (250 IU by intraperitoneal injection), and

killed by cervical dislocation at 14 days (250 U/kg) (Chen et al.,

2020; Sun et al., 2020) (Macklin H837056 200MG, 200MG). In the

phosphate-buffered saline (PBS) control group, the mice were

treated with 5 ml/g PBS by nasal drops every 3 days and exposed

to air for 14 days until euthanasia was performed by injection of

pentobarbital sodium (200 mg/kg i.p.).
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2.3.2 NE/MPO ELISA
Mouse lung tissue was ground, dissolved, and centrifuged, and

the supernatant was collected for analysis by ELISA (Solarbio

SEKM-0118-96T, elabscience E-EL-M3025) (Khan et al., 2019;

Thanabalasuriar et al., 2019; Thierry and Roch, 2020).
2.3.3 Immunofluorescence staining
We used airway instillation of 5 ml/g PBS for the negative control

group. NETs (427.03 ng/ml, 5 ml/g) were administered by airway

instillation once every 3 days for 14 days, at which time the lung tissue

was collected for immunofluorescence analysis. We quantified NETs

by immunofluorescence analysis and ‘NISElement software. To assess

NETs in lung tissue in each group, paraffin-embedded lung tissues

were sectioned (4 µm), and the sectionswerefixed on glass slides. After

allowing the tissue sections to stand at room temperature for 10 min,

theparaffin sectionswereplaced into xylene for 3min, absolute ethanol

for 5 min, 85% alcohol for 5 min, and 75% alcohol for 5 min before

beingwashedwithddH2O for 5min.Weplaced the tissue sections in a

repair cassette filled with citric acid antigen retrieval solution (pH 6.0)

andmicrowave antigen retrieval. After natural cooling, the slides were

placed in PBS and washed 3 times for 5 min each with shaking on a

decolorization shaker. After the slices dried, a circle was drawn around

the tissue with a histochemical pen to prevent fluid loss. Endogenous

peroxidase activity was inhibited using a 3% H2O2 solution for 15

minutes, and the specimens were blocked with PBS containing 1%

bovine serumalbumin (BSA,A8010, Solar). The blocking solutionwas

gentlydried, and the sectionswere incubatedwith anti-NE (SantaCruz

sc-365950) and anti-MPO (Abcam ab208670) at 4°C overnight. The

slides were placed in PBS and washed 3 times on a decolorization

shaker for 5 min each time. Then, the slides were incubated for 1 hour

with Alexa Fluor 488 goat anti-mouse IgG1 (1070-02, Southern

Biotech) and Alexa Fluor 546 donkey anti-rabbit (H+L) (Invitrogen

A10040) secondaryantibodies in thedark.The slideswere againplaced

in PBS and washed 3 times on a decolorization shaker for 5 min each

time. The sections were then stained with 4’,6-diamidino-2-

phenylindole (DAPI, DA0004, Leagene Bioon).The slides were

placed in PBS and washed 3 times for 5 min each with shaking on a

decolorization shaker. When the slices had dried slightly, a small

amount of anti-fluorescence quenching agent was dropped onto each

slide, and the slide was sealed with resin mounting agent. We used a

confocal microscope to visualize the slides. NETs were quantified by

immunofluorescence analysis with ‘NIS Element’ software.
2.4 Lung haematoxylin and eosin staining

After the mice were euthanized by cervical dislocation and a

sternotomy was performed, the lung was perfused transcardially

with PBS at a pressure of 25 cm H2O to remove blood cells. The

right bronchi were ligated with a string, and the lung was perfused

through the trachea with 4% polyformaldehyde at a pressure of 20

cm H2O and fixed in 4% paraformaldehyde solution at 4°C for 24 h.

The lung sections (4 mm) were stained with H&E to examine lung

morphometry and determine the mean linear intercept (MLI) to

assess lung development. The MLI was used to estimate the average
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diameter of a single alveolus by using the following formula: MLI =

total length/alveolar septal number. The intercepts of the alveolar

septal number were counted at the intersection point of the two

lines, and the total length of all of lines combined were divided by

the number of intercepts to provide the MLI of the region.
2.5 Quantitative real-time PCR

The total RNA was extracted from fresh lung tissue by using

TRIzol reagent (LIFE 15596-026, Beijing, China) and reverse

transcribed into cDNA with a reverse transcription kit (Evo M-

MLV Mix Kit with DNA Clean for qPCR [Accurate Biology,

AG11728, China)] according to the manufacturer’s instructions.

Aquaporin 5 (AQP5), Surfactant-associated protein C (SPC),

vascular endothelial growth factor (VEGF), c-MYC, cyclin D1,

and GAPDH mRNA expression was quantified with a

StepOnePlus Real-Time PCR System (ABI, USA). Primers with

the following sequences (Table 1) were used:

The results were based on the 2−DCt method, and GAPDH was

used as the internal control. Each sample was analysed in triplicate,

and the results represent three independent experiments.
2.6 Western blotting

The relative levels of SPC, AQP5, b-catenin, and WNT3a in the

lung tissues of mice in each group were determined by Western

blotting. Total protein was obtained from the lung tissues by RIPA

lysis buffer containing protease and phosphatase inhibitor cocktails

(P0013B Beyotime, Shanghai, China). Protein concentrations were

determined with a bicinchoninic acid (BCA) assay. The proteins

were separated by 7.5, 10%, and 12.5% SDS−PAGE and transferred

to polyvinylidene fluoride membranes (Solarbio, Beijing, China).

The membranes were blocked for 1 h in blocking solution at room

temperature and incubated at 4°C overnight with the following

primary antibodies: anti-SFTPC (1:1500, Genetex GTX134340),

anti-b-catenin (1:2000, Genetex GTX101435), rabbit anti-Wnt3a

pAb (1:500, Zenbnio 822111), anti-AQP5 (1:1500, Genetex

gex132400), and anti-b-actin (1:2000, Zenbio R23613). The

membranes were then washed three times with Tris-buffered saline
TABLE 1 Primers for genes amplified by RT-PCR.

Gene Primer sequence

Aqp5-F CTTCCCCCAGGTAGACAGAG

Aqp5-R AAACGCCCAACCCGAATAC

cyclinD1-F AGTGTTGCTGGTGTGTGTTG

cyclinD1-R CCATCTGAATGCGTGTGTGG

c-myc-F AGTGTTCTCTGCCTCTGCCC

c-myc-R TGGCTGTCGGGGTTTCCAA

VEGF-F GGACTTGTGTTGGGAGGAGG

VEGF-R CCAGGAATGGGTTTGTCGTG
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Tween-20 (TBST) and incubated with HRP-conjugated goat anti-

rabbit IgG (1:2000, ZSBio,China) for 1h at room temperature.b-Actin
was used as an internal control. Western Chemiluminescent HRP

Substrate (Millipore,MA,USA)wasused, and theblotswerevisualized

using the G: Box gel doc system (Syngene, UK).

2.7 Statistical analysis

In this study, SPSS 20.0 software or GraphPad Prism were used

for statistical analysis and graph, and all data were statistically

compared. The measured data are expressed as the mean ± standard

deviation (x ± s), and independent sample t tests (n≥6) and

nonparametric tests (n<6) were used to compare two groups.

Differences with P<0.05 were statistically significant.

3 Results

3.1 NETs were increased in the tracheal
aspirates of premature infants with BPD
compared with those of premature infants
without BPD

We hypothesized that NETs promoted the development of

BPD. MPO and NE are the major components of NETs. We

examined the levels of NETs in tracheal aspirates by ELISA.

Samples were collected from 5 premature infants with BPD and 5

premature infants without BPD. We found higher levels of MPO

and NE in the tracheal aspirates of preterm infants with BPD than

in those of preterm infants without BPD (Figure 1).These results

show that NETs concentrations differ amongst subjects with and

without BPD and that the presence of BPD is strongly associated

with NETs concentrations.
3.2 NETs were induced by PMA
and quantified

We used PMA to induce peripheral blood neutrophils to

produce NETs, and we qualitatively examined the presence of
Frontiers in Cellular and Infection Microbiology 04
NETs and PBS by immunofluorescence (Figure 2) and measured

eDNA levels with a microplate reader to calculate NET

concentrations (Table 2). We found that PMA induced markedly

greater production of NETs from neutrophils than PBS. In addition,

the concentration of eDNA produced significantly decreased with

decreasing PMA concentrations.
3.3 Distribution and quantification of NETs
in hyperoxia-induced lung injury

Immunofluorescence analysis (Figures 3, 4) and ELISA

(Figure 5) showed that lung levels of MPO and NE in the

hyperoxia-induced lung injury group were significantly higher

than those in the PBS control group. This illustrated that the

hyperoxia-induced BPD group had a higher content of NETs,

which was consistent with the clinical results. The animal trials

also demonstrated a close association between NETs and BPD.
3.4 NETs can cause BPD-like changes in
preterm mice

We examined the lungs in the NET group to determine

whether NETs could cause BPD-like changes. In addition, the

inhibitor heparin was administered to preterm mice in the NET

group to determine whether BPD-like changes were alleviated by

inhibitors. The mice in the NET group exhibited similar lung

injuries as those in the hyperoxia-induced lung injury group,

which were characterized by a widened alveolar septum and

simplified alveolar developmental structure, as shown by H&E

staining (Figure 6). The MLI was used to assess alveolar

enlargement as a measure of impaired lung development. We

compared the MLI between the PBS control group, NET group,

and hyperoxia-induced lung injury group and found that it was

significantly increased (P<0.05). Furthermore, lung injury was

improved in the NET+heparin group compared to the NETs

group and the hyperoxia-induced lung injury group (P<0.05

one-way ANOVA) (Figure 7).
A B

FIGURE 1

Comparison of NE/MPO levels in tracheal aspirates from patients with and without BPD. (A). The level of NE in the tracheal aspirates of BPD and non-
BPD patients. (B). The level of MPO in the tracheal aspirates of BPD and non-BPD patients. Statistical analysis was performed by the Mann−Whitney test
(n = 5). Asterisks indicate significant differences (**p ≤ 0.0079).
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3.5 NETs slow lung development

The levels of AQP5 and SPC are associated with alveolar

epithelial cell differentiation and development. We examined the

expression of AQP5 and SPC in lung tissue in each group to

determine the effects of NETs on alveolar development.

Compared to that in the PBS control group, AQP5 expression

was lower in the NETs group, as shown by qPCR (P<0.05, one-way

ANOVA) (Figure 8). Western blotting showed that the levels of

AQP5 and SPC in the NET group were significantly lower than those

in the PBS control group and NET+heparin group (P<0.05 one-way

ANOVA). These results demonstrate that NETs impaired pulmonary

epithelial cell development and led to BPD-like changes, while

heparin improved alveolar development and alleviated pulmonary

BPD-like changes (P<0.05 one-way ANOVA) (Figure 9).
3.6 Effects of NETs on target genes of the
WNT/b-catenin pathways

The WNT/b-catenin pathway is the most classic signalling

pathway that affects lung development, and c-MYC, cyclin D1,

and VEGF are important target genes of this pathway. To determine

whether NETs affect lung development via this pathway, we
Frontiers in Cellular and Infection Microbiology 05
examined the expression of important target genes of this

pathway in each group (Figure 10). We found that the expression

of c-MYC, cyclin D1, and VEGF was significantly lower in the NET

group than in the PBS control group, as determined by RT−PCR.

The NETs + heparin group had significantly higher expression than

the NET group (P<0.05 one-way ANOVA) (Figure 11).

We also used Western blotting to evaluate the effects of NETs

on the expression of important WNT/b-catenin proteins. We found

that the levels of WNT3a and b-catenin in the NET group and

hyperoxia-induced lung injury group were significantly lower than

those in the PBS control group.

NETs influence downstream target gene and protein expression

through the WNT/b-catenin pathway, leading to the development

of BPD in preterm infants.
4 Discussion

BPD is a severe and sometimes lethal chronic lung disease in

prematurely born neonates, especially those with very low birth

weight (VLBW) and extremely low birth weight (ELBW) (Davidson

and Berkelhamer, 2017). Pulmonary immaturity, infection,

hyperoxia, and other adverse conditions can lead to lung damage

in preterm newborns, resulting in pulmonary fibrosis or the
TABLE 2 eDNA concentration.

PMA Concentration of PMN
(cells/ml)

Concentration of NETs
(ng/ml)

Concentration of PMN
(cells/ml)

Concentration of NETs
(ng/ml)

500 nmol/L 1× 107 754.29 5× 106 427.03

1× 106 133.39 5× 105 47.25

2× 105 22.22 1× 105 8.09

1× 105 13.09 5× 104 3.13
FIGURE 2

NETs were induced by PMA (immunofluorescence) (×200); bar: 100 µm.
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obstruction of alveolar and pulmonary vascular development. The

exacerbation of VLBW and ELBW in newborns leads to a

corresponding increase in the incidence of BPD, despite the use of

protective strategies such as prenatal steroid administration, postnatal

surfactant supplementation, and safer ventilator measures. Extremely

high mortality, chronic respiratory dysfunction, neurodevelopmental

difficulties, prolonged hospitalization, large expenditures, and

significant social and household burdens are all consequences of

severe BPD. VLBW and ELBW infants are mostly born in the

tubular or cystic stages of lung development. Normal lung

development in these stages might be blocked due to various

adverse factors, resulting in BPD. However, the pathogenesis of

BPD is still unclear.

Neutrophils are the first line of defence against invading

pathogens (Brinkmann et al., 2004). Neutrophils can form NETs

to remove extracellular pathogens (Rosales et al., 2016) and are

involved in the development of a variety of inflammatory diseases of

the lungs, such as COPD and acute lung injury (Jorch and Kubes,
Frontiers in Cellular and Infection Microbiology 06
2017; Söderberg and Segelmark, 2018). In addition to bacteria-

induced NETs (Chen et al., 2021), viruses (Saitoh et al., 2012),

cholesterol and urate crystals (Chen et al., 2021), cytokines

(Warnatsch et al., 2015), calcium ionophores (Tatsiy and

McDonald, 2018), bacterial lipopolysaccharides (Kenny et al.,

2017), and Fobosol-12-Myriam-13-acetate (Pieterse et al., 2016)

can also induce NETs production. Therefore, in this study, PMA

was used to induce neutrophils obtained from human peripheral

blood, and NETs were administered to mice. Heparin binds to

extracellular histones and reduces the activity of NETs, thereby

affecting blood clotting and infection-related vascular function

(Keshari et al., 2013). Anti-histone antibodies and heparin can

reduce lung damage by inhibiting NET formation. Therefore,

heparin was used as an inhibitor of NETs in this study. Similar to

the conclusions of other researchers, our analysis of children with

and without BPD found that the levels of NETs in children with

BPD were significantly higher than those in children without BPD.

In animal experiments, it was shown that the levels of NETs in the
A B

FIGURE 4

Fluorescence intensity. (A, B). Fluorescence intensity of NE and MPO. Statistical analysis was performed by one-way ANOVA with a post hoc Tukey’s
test (n=6, ***p ≤ 0,0003 ****p<0.0001).
FIGURE 3

Comparison of the immunofluorescence of NETs in the PBS control group and hyperoxia-induced lung injury group (×200); bar: 100 µm.
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hyperoxia-induced BPD group were higher than those in the PBS

control group, which showed that NETs were closely associated

with BPD.

AQP1 and AQP5 play important roles in lung pathophysiology

and disease, including chronic and acute lung injury, COPD

(COPD), other inflammatory lung diseases, and lung cancer

(Gardiner and Andrews, 2012). Rodent studies showed that four

AQPs are widely distributed in airway epithelial cells, alveolar

epithelial cells, associated microvascular endothelial cells, and

submucosal glands (Yadav et al., 2020). AQP5 is barely expressed

at birth and gradually increases after birth until adulthood

(Verkman, 2007). SP-A, SP-B, SP-C, and SP-D 4 are pulmonary

surfactant proteins that work together to maintain the stability of
Frontiers in Cellular and Infection Microbiology 07
pulmonary surfactants and improve lung compliance to prevent

lung tissue collapse. SP can regulate PS secretion and clearance by

regulating the level of PS in the alveoli to maintain alveolar stability

of the environment. SPC can also stabilize the effect of surfactant

membranes during respiratory motion by increasing the absorption

of AECII. Our study showed that AQP5 and SPC levels were

decreased in the NETs group compared to the PBS control group,

but there was no significant difference in the hyperoxia-induced

lung injury group.

Based on our findings, NETs interfered with alveolar epithelial cell

differentiation and function, as well as lung development.

The WNT/b-catenin pathway is one of the most important

and classical pathways involved in alveolar development. An
A B

FIGURE 5

ELISA analysis of NETs in the PBS control group and the hyperoxia-induced lung injury group. (A, B). Comparison of NE and MPO levels in the PBS
control group and the hyperoxia-induced lung injury group. Statistical analysis was performed by unpaired t test. Asterisks indicate significant
differences (n=10, ****p ≤ 0.0001 **p ≤ 0.003 unpaired t test).
FIGURE 6

Effect of NETs on the lungs over 14 days. H&E assessment of lung tissue in each group (×200).
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animal study showed that the WNT/b-catenin pathway could

influence lung differentiation and development, particularly

during the cystic stage, resulting in clinical BPD-like changes

(Jin et al., 2020). Moreover, the classical WNT/b-catenin
pathway regulates inflammatory cytokines (TNF, IL-1, IL-6,

IL-8, and IL-15), which play important roles in reducing lung

inflammation and pulmonary fibrosis and are linked to the

pathogenesis of BPD (Hu et al., 2020). Furthermore, the

classical WNT/b-catenin pathway is a vital regenerative

pathway for chronic lung disease, as it is required for the

differentiation and survival of the alveolar epithelium and

progenitor cells after lung injury. If this pathway is inhibited,

epithelial cell repair in preterm infants with COPD and asthma is
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blocked (Raslan and Yoon, 2020). Thus, the classical WNT/b-
catenin signalling pathway might play an important role in the

development of BPD. When the Wnt ligand is present, Wnt

binds to the coreceptor low-density lipoprotein receptor-related

protein 5/6 (LRP5/6) and the cell membrane receptor Frizzled,

and destroys the degradation complex; b-catenin is not

phosphorylated, is displaced to the nucleus, and binds to the

transcription factor TCF/LEF to initiate the transcription of

downstream target genes (mainly associated with lung

development: VEGF, c-MYC, cyclin D1, etc.), promoting cell

proliferation, differentiation and maturation to exert its

physiological effects. Compared to those in the control group,

the levels of cyclin D1, c-MYC, and VEGF were decreased in the
FIGURE 7

Comparison of MLI values for each group. Comparison of MLI values for each group. Statistical analysis was performed by ordinary one-way ANOVA
with a post hoc Tukey’s test. Asterisks above the bars indicate significance compared to untreated cells (n=11, ****p ≤ 0.0001; n.s., not significant,
one-way ANOVA).
FIGURE 8

The effect of NETs on alveolar differentiation and development. AQP5 expression was determined by qPCR. Statistical analysis was performed by
one-way ANOVA with a post hoc Tukey’s test (n=6, *p ≤ 0.001; n.s, not significant. one-way ANOVA).
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NETs group and the hyperoxia-induced lung injury group. This

finding suggests that the Wnt/b-catenin pathway is inhibited by

NETs, while the levels of downstream target genes can be

moderately upregulated by the NETs inhibitor heparin.

Further studies showed that the levels of WNT3a and b-
catenin in the NETs group were significantly lower than those

in the PBS control group. Therefore, NETs inhibit this pathway

and decrease the expression of downstream target genes.

Heparin can antagonize the inhibition of WNT3a and b-
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catenin by NETs, thereby promoting the expression of

downstream target genes and proteins. NETs inhibitors are

regarded as a novel approach to treating related diseases Tsai

and Hwang (2015), and in this study, we demonstrated that 250

U/kg heparin could inhibit NETs in an animal model, mitigating

BPD-like changes in mouse lungs. As a result, heparin, which is a

NET inhibitor, could be a potential treatment for BPD.

We confirmed the correlation between NETs and BPD in

clinical specimens. Furthermore, in the preterm mouse model,
A B

C D

FIGURE 9

The effect of NETs on alveolar differentiation and development was determined by Western blotting. (A, B). The expression of AQP5 and SPC was
determined by Western blotting. (C, D) Greyscale value of the Western blot results. Statistical analysis was performed by one-way ANOVA with a post
hoc Tukey’s test (C, D). n=3, ****p ≤ 0,001, **p ≤ 0.005, *p < 0.05; n.s, not significant. one-way ANOVA).
A B C

FIGURE 10

The expression of c-MYC, cyclin D, and VEGF in each group. (A–C) Relative gene expression of c-MYC, cyclin D1, and VEGF. Statistical analysis was
performed by one-way ANOVA with a post hoc Tukey’s test (n=5, **≤0.005,***p ≤ 0.0008, ****p ≤ 0,0001. n.s, not significant).
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we found that NETs inhibited the expression of WNT3a, b-
catenin, and downstream target genes in the WNT/b-catenin
pathway, impairing lung development and promoting the

occurrence of BPD. NETs might be a novel target in the

prevention and treatment of BPD in preterm infants, and NET

inhibitors might serve as potential therapeutic agents for BPD.
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