3 research outputs found

    Supplementary control based on current source coupling for improving dynamic characteristics of active distribution network

    No full text
    Supplementary control (SC) technology is widely leveraged by power supply companies in active distribution networks (ADNs) to improve their stability and dynamic characteristics. Yet, the existed SCs are generally implemented from inside the converter controllers of distributed generators (DGs) or active loads, so there is a need to redesign the internal physical structure of the existing controller, resulting in the increasing work amount of assembling and workability. This paper studies the specific R & D process of a novel external coupling type SC (ECSC), which is based upon current source injection (CSI-ECSC) for improving the dynamic characteristics of ADN. The SC current signals are coupled to the current sampling loop from outside the converter controller. And the employment of the existing current sample makes it unnecessary to redesign the internal physical structure of the existing controller. As a result, the SC assembling is simplified and its workability is improved. In this paper, a detailed exemplary ADN with direct-drive permanent magnet synchronous generator (PMSG) is firstly set up in math for full eigenvalue analysis. Then, the CSI-ECSC is designed with its control loop, interface circuit, and parameter setting. Furthermore, by using PSCAD/EMTDC, groups of case studies are conducted in ADNs where photovoltaics (PVs) and energy storage (ES) are included. Finally, the real-time hardware-in-the-loop (HIL) testing validates the functionality of the realized CSI-ECSC in RTDS.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Electrical Power Grid

    A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries

    No full text
    Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3-3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z-direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All-solid-state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.RST/Storage of Electrochemical EnergyPhotovoltaic Materials and DevicesRID/TS/Instrumenten groe

    Eyes-Open/Eyes-Closed Dataset Sharing for Reproducibility Evaluation of Resting State fMRI Data Analysis Methods

    No full text
    The multi-scan resting state fMRI (rs-fMRI) dataset was recently released; thus the test-retest (TRT) reliability of rs-fMRI measures can be assessed. However, because this dataset was acquired only from a single group under a single condition, we cannot directly evaluate whether the rs-fMRI measures can generate reproducible between-condition or between-group results. Because the modulation of resting state activity has gained increasing attention, it is important to know whether one rs-fMRI metric can reliably detect the alteration of the resting activity. Here, we shared a public Eyes-Open (EO)/Eyes-Closed (EC) dataset for evaluating the split-half reproducibility of the rs-fMRI measures in detecting changes of the resting state activity between EO and EC. As examples, we assessed the split-half reproducibility of three widely applied rs-fMRI metrics: amplitude of low frequency fluctuation, regional homogeneity, and seed-based correlation analysis. Our results demonstrated that reproducible patterns of EO-EC differences can be detected by all three measures, suggesting the feasibility of the EO/EC dataset for performing reproducibility assessment for other rs-fMRI measures
    corecore