69 research outputs found

    Study on the design method of integration of roof and photovoltaic based on aesthetics, technology and energy-saving characteristic

    Get PDF
    The development and utilization of new energy has been concerned due to the traditional energy is increasingly scarce. In recent years, solar building has developed rapidly in the construction industry which is a major energy consuming component. As an organic part of the building, the combination of roof and solar energy has become the focus of attention because of its large size, less shielding and other characteristics. Based on the works of recent years’ Solar Decathlon, this paper analysed the design and implementation of the integration of solar building’s roof and photovoltaic. Meanwhile, taking an office building in Xinjiang, China as an example, the paper analysed the design points and energy-saving situation of the roof photovoltaic building and prospected the application prospect of integrated design method of building’s solar roof

    The plasma level changes of VEGF and soluble VEGF receptor-1 are associated with high-altitude pulmonary edema

    Get PDF
    Hypoxia-induced plasma levels of VEGF and sFlt-1 are responsible for increased vascular permeability occurred in both brain and pulmonary edema. Currently, it remains unclear the exact roles of VEGF and sFlt-1 in High Altitude Pulmonary Edema (HAPE) pathogenesis. In this study, plasma levels of VEGF and sFlt-1 from 10 HAPE and 10 non-HAPE subjects were measured and compared. The results showed that plasma levels of both VEGF and sFlt-1 in HAPE patients were significantly increased as compared to the non-HAPE group. Interestingly, increased plasma levels of these two protein factors were markedly reduced after treatments. As compared to VEGF, sFlt-1 was much more affected by hypoxia and treatments, suggesting this factor was a key factor contributed to HAPE pathogenesis. Importantly, the ratio of sFlt-1 and VEGF in group of either non-HAPE or HAPE after recovery was significantly lower than the ratio in HAPE patients prior to treatments. Our findings suggested that sFlt-1 was a key factor that involved in HAPE pathogenesis and the sFlt-1/VEGF ratio could be used as a sensitive diagnostic marker for HAPE

    Can we early diagnose metabolic syndrome using brachial-ankle pulse wave velocity in community population

    Get PDF
    BACKGROUND: The prevalence of metabolic syndrome (MetS) increased recently and there was still not a screening index to predict MetS. The aim of this study was to estimate whether brachial-ankle pulse wave velocity (baPWV), a novel marker for systemic arterial stiffness, could predict MetS in Chinese community population. METHODS: A total of 2 191 participants were recruited and underwent medical examination including 1 455 men and 756 women from June 2011 to January 2012. MetS was diagnosed according to the criteria of the International Diabetes Federation (IDF). Multiple Logistic regressions were conducted to explore the risk factors of MetS. Receiver operating characteristic (ROC) curve was performed to estimate the ideal diagnostic cutoff point of baPWV to predict MetS. RESULTS: The mean age was (45.35+/-8.27) years old. In multiple Logistic regression analysis, the gender, baPWV and smoking status were risk factors to MetS after adjusting age, gender, baPWV, walk time and sleeping time. The prevalence of MetS was 17.48% in 30-year age population in Shanghai. There were significant differences (chi(2) = 96.46, P \u3c 0.05) between male and female participants on MetS prevalence. According to the ROC analyses, the ideal cutoff point of baPWV was 1 358.50 cm/s (AUC = 60.20%) to predict MetS among male group and 1 350.00 cm/s (AUC = 70.90%) among female group. CONCLUSION: BaPWV may be considered as a screening marker to predict MetS in community Chinese population and the diagnostic value of 1 350.00 cm/s was more significant for the female group

    Primary Age-Related Tauopathy in Human Subcortical Nuclei

    Get PDF
    The present study aimed to determine the spatial distribution patterns of hyperphosphorylated tau-immunoreactive cells in subcortical nuclei of post-mortem human brain with primary age-related tauopathy (PART). Subcortical tauopathy has important pathological and clinical implications. Expression of tau was examined in different subcortical regions of definite PART cases with a Braak neurofibrillary tangle stage >0 and ≤IV, and with a Thal phase 0 (no beta-amyloid present). Post-mortem brain tissue of PART was studied using immunohistochemistry and subsequent semi-quantitative assessment with Braak NFT stage -matched pre-Alzheimer’s disease (AD) and AD cases as a control. Expression of tau was frequently found in subcortical nuclei including the substantia nigra, inferior colliculus, locus coeruleus, medulla oblongata in the brainstem, the caudate, putamen, nucleus globus pallidus in the striatum, the hypothalamus, thalamus, subthalamus in the diencephalon, and the cervical spinal cord in both PART and AD, but not in the dentate nucleus of the cerebellum. A positive correlation was found between the Braak NFT stage and the tau distribution (qualitative)/tau density (quantitative) in PART and AD. Brainstem nuclei were commonly involved in early PART with NFT Braak stage I/II, there was no preference among the substantia nigra, inferior colliculus, locus caeruleus and medulla oblongata. The prevalence and severity of tau pathology in subcortical nuclei of PART and AD were positively correlated with NFT Braak stage, suggesting that these nuclei were increasingly involved as PART and AD progressed. Subcortical nuclei were likely the sites initially affected by aging associated tau pathology, especially the brainstem nuclei including the substantia nigra, inferior colliculus, locus caeruleus and medulla oblongata

    Development and validation of a three-dimensional deep learning-based system for assessing bowel preparation on colonoscopy video

    Get PDF
    BackgroundThe performance of existing image-based training models in evaluating bowel preparation on colonoscopy videos was relatively low, and only a few models used external data to prove their generalization. Therefore, this study attempted to develop a more precise and stable AI system for assessing bowel preparation of colonoscopy video.MethodsWe proposed a system named ViENDO to assess the bowel preparation quality, including two CNNs. First, Information-Net was used to identify and filter out colonoscopy video frames unsuitable for Boston bowel preparation scale (BBPS) scoring. Second, BBPS-Net was trained and tested with 5,566 suitable short video clips through three-dimensional (3D) convolutional neural network (CNN) technology to detect BBPS-based insufficient bowel preparation. Then, ViENDO was applied to complete withdrawal colonoscopy videos from multiple centers to predict BBPS segment scores in clinical settings. We also conducted a human-machine contest to compare its performance with endoscopists.ResultsIn video clips, BBPS-Net for determining inadequate bowel preparation generated an area under the curve of up to 0.98 and accuracy of 95.2%. When applied to full-length withdrawal colonoscopy videos, ViENDO assessed bowel cleanliness with an accuracy of 93.8% in the internal test set and 91.7% in the external dataset. The human-machine contest demonstrated that the accuracy of ViENDO was slightly superior compared to most endoscopists, though no statistical significance was found.ConclusionThe 3D-CNN-based AI model showed good performance in evaluating full-length bowel preparation on colonoscopy video. It has the potential as a substitute for endoscopists to provide BBPS-based assessments during daily clinical practice

    Novel Magnetically-Recoverable Solid Acid Catalysts with a Hydrophobic Layer in Protecting the Active Sites from Water Poisoning

    No full text
    Three novel magnetically-recoverable solid acid catalysts (hydrophobic catalysts Fe3O4@SiO2-Me&PrSO3H, Fe3O4@SiO2-Oc&PrSO3H and hydrophilic catalyst Fe3O4@SiO2-PrSO3H) were synthesized by introducing organic propylsulfonic acid and alkyl groups to Fe3O4@SiO2 nanocomposites. We characterized these catalysts by FT-IR, EDS, XRD, VSM and SEM, and found that they had excellent core-shell structure and magnetic responsiveness. We also explored the impact of surface hydrophobicity on activity and stability of catalysts in ethyl acetate (EAC) synthesis reaction. The results indicated that: for reactivity and reusability, Fe3O4@SiO2-Oc&PrSO3H > Fe3O4@SiO2-Me&PrSO3H > Fe3O4@SiO2-PrSO3H. This was because octyl and methyl groups could build a hydrophobic layer on the surfaces of Fe3O4@SiO2-Oc&PrSO3H and Fe3O4@SiO2-Me&PrSO3H, and this could effectively prevent water molecules from poisoning active sites; the hydrophobicity of octyl was stronger than methyl. Fe3O4@SiO2-Oc&PrSO3H also showed higher catalytic activity in the external aqueous reaction system, which indicated that it had good water toleration. Moreover, we could easily separate Fe3O4@SiO2-Oc&PrSO3H from the reaction mixture with an external magnetic field, in the meanwhile, its reactivity could still remain above 80% after reusing 6 times

    Cutting Path Planning Technology of Shearer Based on Virtual Reality

    No full text
    With regards to the low degree of digitization, lack of real geological terrain, and low degree of automation in the cutting process of the traditional virtual fully mechanized mining face, we studied the key technologies of virtual operation and cutting path planning of the shearer on the three-dimensional (3D) roof and floor based on the virtual reality engine (Unity3D). Firstly, the virtual 3D coal seam was constructed through the 3D geological coordinate data of the mine. On this basis, the shape function of the scraper conveyor with the adaptive configuration on the floor was constructed to obtain the combined operation of the virtual shearer and the scraper conveyor. The movement of the shearer’s walking and height-adjustment was then, analyzed. A strategy for automatic height-adjustment based on the adjustment of the direction of the drum movement is hence, proposed to control the cutting path of the shearer. Finally, different experimental schemes were simulated in the developed prototype system after which each of the schemes was evaluated using the fuzzy comprehensive evaluation method. The results show that the proposed strategy for trajectory control can improve the accuracy and stability of the shearer’s motion trajectory. In Unity3D, the pre-selected schemes and digital and visual planning of coal production are previewed ahead of time, the whole production process can be mapped synchronously in the production process. It is also obtained that the virtual preview and evaluation of the production process can provide some guidance for actual production

    Photoinduced Metal-Free Atom Transfer Radical Polymerization for the Modification of Cellulose with Poly(<i>N</i>-isopropylacrylamide) to Create Thermo-Responsive Injectable Hydrogels

    No full text
    Photoinduced metal-free ATRP has been successfully applied to fabricate thermo-responsive cellulose graft copolymer (PNIPAM-g-Cell) using 2-bromoisobuturyl bromide-modified cellulose as the macroinitiator. The polymerization of N-isopropylacrylamide (NIPAM) from cellulose was efficiently activated and deactivated with UV irradiation in the presence of an organic-based photo-redox catalyst. Both FTIR and 13C NMR analysis confirmed the structural similarity between the obtained PNIPAM-g-Cell and that synthesized via traditional ATRP methods. When the concentration of the PNIPAM-g-Cell is over 5% in water, it forms an injectable thermos-responsive hydrogel composed of micelles at 37 °C. Since organic photocatalysis is a metal-free ATRP, it overcomes the challenge of transition-metal catalysts remaining in polymer products, making this cellulose-based graft copolymer suitable for biomedical applications. In vitro release studies demonstrated that the hydrogel can continuously release DOX for up to 10 days, and its cytotoxicity indicates that it is highly biocompatible. Based on these findings, this cellulose-based injectable, thermo-responsive drug-loaded hydrogel is suitable for intelligent drug delivery systems
    • …
    corecore