135 research outputs found

    Imagination Based Sample Construction for Zero-Shot Learning

    Full text link
    Zero-shot learning (ZSL) which aims to recognize unseen classes with no labeled training sample, efficiently tackles the problem of missing labeled data in image retrieval. Nowadays there are mainly two types of popular methods for ZSL to recognize images of unseen classes: probabilistic reasoning and feature projection. Different from these existing types of methods, we propose a new method: sample construction to deal with the problem of ZSL. Our proposed method, called Imagination Based Sample Construction (IBSC), innovatively constructs image samples of target classes in feature space by mimicking human associative cognition process. Based on an association between attribute and feature, target samples are constructed from different parts of various samples. Furthermore, dissimilarity representation is employed to select high-quality constructed samples which are used as labeled data to train a specific classifier for those unseen classes. In this way, zero-shot learning is turned into a supervised learning problem. As far as we know, it is the first work to construct samples for ZSL thus, our work is viewed as a baseline for future sample construction methods. Experiments on four benchmark datasets show the superiority of our proposed method.Comment: Accepted as a short paper in ACM SIGIR 201

    Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

    Get PDF
    In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm

    Evaluation of the POSSUM, p-POSSUM, o-POSSUM, and APACHE II scoring systems in predicting postoperative mortality and morbidity in gastric cancer patients

    Get PDF
    SummaryBackground/ObjectiveGastric cancer is the fourth most prevalent cancer worldwide. The ability to accurately predict surgery-related morbidity and mortality is critical in deciding both the timing of surgery and choice of surgical procedure. The aim of this study is to compare the POSSUM, p-POSSUM, o-POSSUM, and APACHE II scoring systems for predicting surgical morbidity and mortality in Chinese gastric cancer patients, as well as to create new scoring systems to achieve better prediction.MethodsData from 612 gastric cancer patients undergoing gastrectomy between January 2007 and December 2011 were included in this study. The predictive abilities of the four scoring systems were compared by examining observed-to-expected (O/E) ratios, the receiver operating characteristic curve, Student t test, and χ2 test results.ResultsThe observed complication rate of 34% (n = 208) did not differ significantly from the rate of 36.6% (n = 208) predicted by the POSSUM scoring system (O/E ratio = 0.93). The observed mortality rate was 2.9% (n = 18). For predicting mortality, POSSUM had an O/E ratio of 0.34 as compared with p-POSSUM (O/E ratio = 0.91), o-POSSUM (O/E ratio = 1.26), and APACHE II (O/E ratio = 0.28).ConclusionThe POSSUM scoring system performed well with respect to predicting morbidity risk following gastric cancer resection. For predicting postoperative mortality, p-POSSUM and o-POSSUM exhibited superior performance relative to POSSUM and APACHE II

    Directional Differentiability of the Generalized Metric Projection in Hilbert spaces and Hilbertian Bochner spaces

    Full text link
    Let HH be a real Hilbert space and CC a nonempty closed and convex subset of HH. Let PC:HCP_C: H\rightarrow C denote the (standard) metric projection operator. In this paper, we study the G\^ateaux directional differentiability of PCP_C and investigate some of its properties. The G\^ateaux directionally derivatives of PCP_C are precisely given for the following cases of the considered subset CC: 1. closed and convex subsets; 2. closed balls; 3. closed and convex cones (including proper closed subspaces). For special Hilbert spaces, we consider directional differentiability of PCP_C for some Hilbert spaces with orthonormal bases and the real Hilbert space L2([π,π])L^2([-\pi,\pi]) with the trigonometric orthonormal basis.Comment: This article has been accepted for publicatio

    Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

    Get PDF
    In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm
    corecore