139 research outputs found

    Model Sparsification Can Simplify Machine Unlearning

    Full text link
    Recent data regulations necessitate machine unlearning (MU): The removal of the effect of specific examples from the model. While exact unlearning is possible by conducting a model retraining with the remaining data from scratch, its computational cost has led to the development of approximate but efficient unlearning schemes. Beyond data-centric MU solutions, we advance MU through a novel model-based viewpoint: sparsification via weight pruning. Our results in both theory and practice indicate that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. With this insight, we develop two new sparsity-aware unlearning meta-schemes, termed `prune first, then unlearn' and `sparsity-aware unlearning'. Extensive experiments show that our findings and proposals consistently benefit MU in various scenarios, including class-wise data scrubbing, random data scrubbing, and backdoor data forgetting. One highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) in the proposed sparsity-aware unlearning paradigm. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse

    The SpeakIn System Description for CNSRC2022

    Full text link
    This report describes our speaker verification systems for the tasks of the CN-Celeb Speaker Recognition Challenge 2022 (CNSRC 2022). This challenge includes two tasks, namely speaker verification(SV) and speaker retrieval(SR). The SV task involves two tracks: fixed track and open track. In the fixed track, we only used CN-Celeb.T as the training set. For the open track of the SV task and SR task, we added our open-source audio data. The ResNet-based, RepVGG-based, and TDNN-based architectures were developed for this challenge. Global statistic pooling structure and MQMHA pooling structure were used to aggregate the frame-level features across time to obtain utterance-level representation. We adopted AM-Softmax and AAM-Softmax combined with the Sub-Center method to classify the resulting embeddings. We also used the Large-Margin Fine-Tuning strategy to further improve the model performance. In the backend, Sub-Mean and AS-Norm were used. In the SV task fixed track, our system was a fusion of five models, and two models were fused in the SV task open track. And we used a single system in the SR task. Our approach leads to superior performance and comes the 1st place in the open track of the SV task, the 2nd place in the fixed track of the SV task, and the 3rd place in the SR task.Comment: 4 page

    To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now

    Full text link
    The recent advances in diffusion models (DMs) have revolutionized the generation of complex and diverse images. However, these models also introduce potential safety hazards, such as the production of harmful content and infringement of data copyrights. Although there have been efforts to create safety-driven unlearning methods to counteract these challenges, doubts remain about their capabilities. To bridge this uncertainty, we propose an evaluation framework built upon adversarial attacks (also referred to as adversarial prompts), in order to discern the trustworthiness of these safety-driven unlearned DMs. Specifically, our research explores the (worst-case) robustness of unlearned DMs in eradicating unwanted concepts, styles, and objects, assessed by the generation of adversarial prompts. We develop a novel adversarial learning approach called UnlearnDiff that leverages the inherent classification capabilities of DMs to streamline the generation of adversarial prompts, making it as simple for DMs as it is for image classification attacks. This technique streamlines the creation of adversarial prompts, making the process as intuitive for generative modeling as it is for image classification assaults. Through comprehensive benchmarking, we assess the unlearning robustness of five prevalent unlearned DMs across multiple tasks. Our results underscore the effectiveness and efficiency of UnlearnDiff when compared to state-of-the-art adversarial prompting methods. Codes are available at https://github.com/OPTML-Group/Diffusion-MU-Attack. WARNING: This paper contains model outputs that may be offensive in nature.Comment: Codes are available at https://github.com/OPTML-Group/Diffusion-MU-Attac

    Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning

    Full text link
    Massive data is often considered essential for deep learning applications, but it also incurs significant computational and infrastructural costs. Therefore, dataset pruning (DP) has emerged as an effective way to improve data efficiency by identifying and removing redundant training samples without sacrificing performance. In this work, we aim to address the problem of DP for transfer learning, i.e., how to prune a source dataset for improved pretraining efficiency and lossless finetuning accuracy on downstream target tasks. To our best knowledge, the problem of DP for transfer learning remains open, as previous studies have primarily addressed DP and transfer learning as separate problems. By contrast, we establish a unified viewpoint to integrate DP with transfer learning and find that existing DP methods are not suitable for the transfer learning paradigm. We then propose two new DP methods, label mapping and feature mapping, for supervised and self-supervised pretraining settings respectively, by revisiting the DP problem through the lens of source-target domain mapping. Furthermore, we demonstrate the effectiveness of our approach on numerous transfer learning tasks. We show that source data classes can be pruned by up to 40% ~ 80% without sacrificing downstream performance, resulting in a significant 2 ~ 5 times speed-up during the pretraining stage. Besides, our proposal exhibits broad applicability and can improve other computationally intensive transfer learning techniques, such as adversarial pretraining. Codes are available at https://github.com/OPTML-Group/DP4TL.Comment: Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023

    You've Got Two Teachers: Co-evolutionary Image and Report Distillation for Semi-supervised Anatomical Abnormality Detection in Chest X-ray

    Full text link
    Chest X-ray (CXR) anatomical abnormality detection aims at localizing and characterising cardiopulmonary radiological findings in the radiographs, which can expedite clinical workflow and reduce observational oversights. Most existing methods attempted this task in either fully supervised settings which demanded costly mass per-abnormality annotations, or weakly supervised settings which still lagged badly behind fully supervised methods in performance. In this work, we propose a co-evolutionary image and report distillation (CEIRD) framework, which approaches semi-supervised abnormality detection in CXR by grounding the visual detection results with text-classified abnormalities from paired radiology reports, and vice versa. Concretely, based on the classical teacher-student pseudo label distillation (TSD) paradigm, we additionally introduce an auxiliary report classification model, whose prediction is used for report-guided pseudo detection label refinement (RPDLR) in the primary vision detection task. Inversely, we also use the prediction of the vision detection model for abnormality-guided pseudo classification label refinement (APCLR) in the auxiliary report classification task, and propose a co-evolution strategy where the vision and report models mutually promote each other with RPDLR and APCLR performed alternatively. To this end, we effectively incorporate the weak supervision by reports into the semi-supervised TSD pipeline. Besides the cross-modal pseudo label refinement, we further propose an intra-image-modal self-adaptive non-maximum suppression, where the pseudo detection labels generated by the teacher vision model are dynamically rectified by high-confidence predictions by the student. Experimental results on the public MIMIC-CXR benchmark demonstrate CEIRD's superior performance to several up-to-date weakly and semi-supervised methods

    SYK-targeted dendritic cell-mediated cytotoxic T lymphocytes enhance the effect of immunotherapy on retinoblastoma

    Get PDF
    Purpose: Retinoblastoma (RB) is the most common primary intraocular tumor in children. Chemotherapy is currently the main method of RB treatment. Unfortunately, RB often becomes chemoresistant and turns lethal. Here, we used in vitro cell immunotherapy to explore whether adoptive immunotherapy could be used as a potential treatment for RB. We focused on spleen tyrosine kinase (SYK), which is significantly upregulated in RB cells and serves as a marker for RB cells. Methods: Using lentiviruses, we genetically modified dendritic cells (DCs) to express and present the SYK peptide antigen to cytotoxic T lymphocytes (CTLs) in vitro. We used SYK-negative cell lines (MDA-MB-231, MCF-10A, and hTERT-RPE1) and SYK-positive cell lines (MCF-7 and RB-Y79) to evaluate the specificity and cytotoxicity of DC presented CTLs using FACS, live-cell imaging, and RNA interference. Results: The cytotoxicity of CTLs induced by SYK-overexpressing DCs (SYK-DC–CTLs) was enhanced more than three times in SYK-positive cell lines compared with SYK-negative cell lines. DCs primed with SYK could drive CTL cytotoxicity against SYK-positive cell lines but not against SYK-negative cell lines. Moreover, SYK-silenced RB-Y79 cells successfully evaded the cytotoxic attack from SYK-DC–CTLs. However, SYK-DC–CTLs could target SYK overexpressed hTERT-RPE1 cells, suggesting that SYK is a specific antigen for RB. Furthermore, SYK-DC–CTL exhibited specific cytotoxicity against carboplatin-resistant RB-Y79 cells in vitro. Conclusions: Our data showed that SYK could be a potential immunotherapy target mediated by DCs. We propose SYK as a candidate target for treatment of chemoresistant RB.Fil: Chen, Xuemei. Xi'an Jiaotong University; ChinaFil: Kunda, Patricia Elena. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Lin, Jianwei. Shenzhen University; ChinaFil: Zhou, Meiling. Shenzhen Luohu Peoples Hospital; China. Shenzhen University; ChinaFil: Huang, Jinghan. Shenzhen Luohu Peoples Hospital; ChinaFil: Zhang, Huqin. Xi'an Jiaotong University; ChinaFil: Liu, Tao. Shenzhen University; China. Shenzhen Luohu Peoples Hospital; Chin

    FELM: Benchmarking Factuality Evaluation of Large Language Models

    Full text link
    Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g.~information from Wikipedia), felm focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on felm, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.Comment: Accepted by NeurIPS 2023 Track on Datasets and Benchmark
    • …
    corecore