242 research outputs found
Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI
Purpose:Â To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing.
Methods:Â Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz-oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing.
Results: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects.
Conclusion:Â The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI
Hybrid-space reconstruction with add-on distortion correction for simultaneous multi-slab diffusion MRI
Purpose: This study aims to propose a model-based reconstruction algorithm
for simultaneous multi-slab diffusion MRI acquired with blipped-CAIPI gradients
(blipped-SMSlab), which can also incorporate distortion correction.
Methods: We formulate blipped-SMSlab in a 4D k-space with kz gradients for
the intra-slab slice encoding and km (blipped-CAIPI) gradients for the
inter-slab encoding. Because kz and km gradients share the same physical axis,
the blipped-CAIPI gradients introduce phase interference in the z-km domain
while motion induces phase variations in the kz-m domain. Thus, our previous
k-space-based reconstruction would need multiple steps to transform data back
and forth between k-space and image space for phase correction. Here we propose
a model-based hybrid-space reconstruction algorithm to correct the phase errors
simultaneously. Moreover, the proposed algorithm is combined with distortion
correction, and jointly reconstructs data acquired with the blip-up/down
acquisition to reduce the g-factor penalty.
Results: The blipped-CAIPI-induced phase interference is corrected by the
hybrid-space reconstruction. Blipped-CAIPI can reduce the g-factor penalty
compared to the non-blipped acquisition in the basic reconstruction.
Additionally, the joint reconstruction simultaneously corrects the image
distortions and improves the 1/g-factors by around 50%. Furthermore, through
the joint reconstruction, SMSlab acquisitions without the blipped-CAIPI
gradients also show comparable correction performance with blipped-SMSlab.
Conclusion: The proposed model-based hybrid-space reconstruction can
reconstruct blipped-SMSlab diffusion MRI successfully. Its extension to a joint
reconstruction of the blip-up/down acquisition can correct EPI distortions and
further reduce the g-factor penalty compared with the separate reconstruction.Comment: 10 figures+tables, 8 supplementary figure
Correlated states in twisted double bilayer graphene
Electron-electron interactions play an important role in graphene and related
systems and can induce exotic quantum states, especially in a stacked bilayer
with a small twist angle. For bilayer graphene where the two layers are twisted
by a "magic angle", flat band and strong many-body effects lead to correlated
insulating states and superconductivity. In contrast to monolayer graphene, the
band structure of untwisted bilayer graphene can be further tuned by a
displacement field, providing an extra degree of freedom to control the flat
band that should appear when two bilayers are stacked on top of each other.
Here, we report the discovery and characterization of such displacement-field
tunable electronic phases in twisted double bilayer graphene. We observe
insulating states at a half-filled conduction band in an intermediate range of
displacement fields. Furthermore, the resistance gap in the correlated
insulator increases with respect to the in-plane magnetic fields and we find
that the g factor according to spin Zeeman effect is ~2, indicating spin
polarization at half filling. These results establish the twisted double
bilayer graphene as an easily tunable platform for exploring quantum many-body
states
Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort
Background:
Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy. Objectives:
We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. population. Methods:
The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which \u3e 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24–28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18–45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy. Results:
Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy. Conclusions:
In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk
Customized Enhancement of Thermal Sensitivity of Tumors at Different Subcutaneous Depths by Multichannel Lanthanide Nanocomposites
The photothermal therapeutic effect on tumors located at different subcutaneous depths varies due to the attenuation of light by tissue. Here, based on the wavelength-dependent optical attenuation properties of tissues, the tumor depth is assessed using a multichannel lanthanide nanocomposite. A zeolitic imidazolate framework (ZIF-8)-coated nanocomposite is able to deliver high amounts of the hydrophilic heat shock protein 90 inhibitor epigallocatechin gallate through a hydrogen-bonding network formed by the encapsulated highly polarized polyoxometalate guest. It is superior to both bare and PEGylated ZIF-8 for drug delivery. With the assessment of tumor depth and accumulated amount of nanocomposite by fluorescence, an irradiation prescription can be customized to release sufficient HSP90 inhibitor and generate heat for sensitized photothermal treatment of tumors, which not only ensured therapeutic efficacy but also minimized damage to the surrounding tissues
- …