1,620 research outputs found
Interplay between Quantum Size Effect and Strain Effect on Growth of Nanoscale Metal Thin Film
We develop a theoretical framework to investigate the interplay between
quantum size effect (QSE) and strain effect on the stability of metal
nanofilms. The QSE and strain effect are shown to be coupled through the
concept of "quantum electronic stress. First-principles calculations reveal
large quantum oscillations in the surface stress of metal nanofilms as a
function of film thickness. This adds extrinsically additional strain-coupled
quantum oscillations to surface energy of strained metal nanofilms. Our theory
enables a quantitative estimation of the amount of strain in experimental
samples, and suggests strain be an important factor contributing to the
discrepancies between the existing theories and experiments
1′-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,3′-indolin]-2′-one
In the title indoline compound, C19H14N2O3S, the pyrrolidine ring adopts an envelope conformation with the four-connected (spiro) C atom as the flap [displacement = 0.148 (3) Å]. The mean plane formed through the indoline unit is inclined at dihedral angles of 89.92 (16) and 59.54 (12)° with the thiazole and phenyl rings, respectively; the dihedral angle between the latter rings is 9.55 (14)°. In the crystal, pairs of intermolecular C—H⋯O hydrogen bonds link neighbouring molecules into inversion dimers, producing R
2
2(6) hydrogen-bond ring motifs. Weak intermolecular C—H⋯π as well as π–π interactions [centroid–centroid distance = 3.4041 (15) Å] further consolidate the crystal structure
catena-Poly[[(2,2′-bipyridine)nickel(II)]-μ-2,4′-oxydibenzoato]
In the title compound, [Ni(C14H8O5)(C10H8N2)]n, the NiII atom is six-coordinated in a slightly distorted octahedral geometry by four O atoms from two chelating carboxylate groups of symmetry-related 2,4′-oxydibenzoate anions and by two N atoms from a 2,2′-bipyridine ligand. The NiII atoms are bridged by the 2,4′-oxydibenzoate anions, resulting in the formation of helical chains parallel to [010] with a repeating unit of 15.039 (2) Å
Implications of C1q/TNF-related protein superfamily in patients with coronary artery disease.
The C1q complement/TNF-related protein superfamily (CTRPs) displays differential effects on the regulation of metabolic homeostasis, governing cardiovascular function. However, whether and how they may serve as predictor/pro-diagnosis factors for assessing the risks of coronary artery disease (CAD) remains controversial. Therefore, we performed a clinical study to elaborate on the implication of CTRPs (CTRP1, CTRP5, CTRP7, and CTRP15) in CAD. CTRP1 were significantly increased, whereas CTRP7 and CTRP15 levels were decreased in CAD patients compared to the non-CAD group. Significant differences in CTRP1 levels were discovered between the single- and triple-vascular-vessel lesion groups. ROC analysis revealed that CTRP7 and CTRP15 may serve as CAD markers, while CTRP1 may serve as a marker for the single-vessel lesion of CAD. CTRP1 and CTRP5 can serve as markers for the triple-vessel lesion. CTRP1 may serve as an independent risk predictor for triple-vessel lesion, whereas CTRP15 alteration may serve for a single-vessel lesion of CAD. CTRP1 may serve as a novel superior biomarker for diagnosis of severity of vessel-lesion of CAD patients. CTRP7, CTRP15 may serve as more suitable biomarker for the diagnosis of CAD patients, whereas CTRP5 may serve as an independent predictor for CAD. These findings suggest CTRPs may be the superior predictive factors for the vascular lesion of CAD and represent novel therapeutic targets against CAD
A Mining-Based System Framework for Deploying Knowledge Maps of Composite E-Services
Providing e-services and composite e-services on the Internet is an important trend of e-business. Composite e-services are complex processes which consist of various e-services provided by different e-service providers. In such complex environments, the flexibility and success of e-business depend on effective knowledge supports to access related information and resources of composite e-services. This work proposes a knowledge map platform to provide an effective knowledge support for utilizing composite e-services. A mining-based system framework is proposed to construct the knowledge map. Moreover, the proposed knowledge map is integrated with recommendation capability to provide users customized decision support in utilizing composite e-services
Recommended from our members
Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H2.
Covalent organic frameworks (COFs) are emerging porous polymers that have 2D or 3D long-range ordering. Currently available COFs are typically insoluble or decompose upon dissolution, which remarkably restricts their practical implementations. For 3D COFs, the achievement of noninterpenetration, which maximizes their porosity-derived applications, also remains a challenge synthetically. Here, we report the synthesis of the first highly water-soluble 3D COF (sCOF-101) from irreversible polymerization of a preorganized supramolecular organic framework through cucurbit[8]uril (CB[8])-controlled [2 + 2] photodimerization. Synchrotron X-ray scattering and diffraction analyses confirm that sCOF-101 exhibits porosity periodicity, with a channel diameter of 2.3 nm, in both water and the solid state and retains the periodicity under both strongly acidic and basic conditions. As an ordered 3D polymer, sCOF-101 can enrich [Ru(bpy)3]2+ photosensitizers and redox-active polyoxometalates in water, which leads to remarkable increase of their photocatalytic activity for proton reduction to produce H2
- …