71 research outputs found
Incremental verification of co-observability in discrete-event systems
Existing strategies for verifying co-observability, one of the properties that must be satisfied for synthesizing solutions to decentralized supervisory control problems, require the construction of the complete system model. When the system is composed of many subsystems, these monolithic approaches may be impractical due to the state-space explosion problem. To address this issue, we introduce an incremental verification of co-observability approach. Selected subgroups of the system are evaluated individually, until verification of co-observability is complete. The new method is potentially much more efficient than the monolithic approaches, in particular for systems composed of many subsystems, allowing for some intractable state-space explosion problems to be manageable. Properties of this new strategy are presented, along with a corresponding algorithm and an example
Metabolites changes of a low-temperature and low-salt fermented Chinese kohlrabi during fermentation based on non-targeted metabolomic analysis
A low-temperature and low-salt industrially fermented Chinese kohlrabi (LSCK) was developed in this study, with the salt usage decreased by approximately 70% compared to the traditional high-salt fermented Chinese kohlrabi (HSCK). The differences in physicochemical properties, metabolites and overall flavors during LSCK fermented for 0, 45 and 90 days (d) were analyzed by gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS), electronic nose (E-nose) and other techniques. The results showed that the total acid content increased significantly from 3.68 to 8.59 g/kg. However, the protein content significantly decreased from 2.52/100 to 0.66 g/100 g. The number of lactic acid bacteria cells increased significantly from 3.69 to 4.46 log10CFU/g. Based on multivariate statistical analysis, 21, 14, and 15 differential metabolites were identified in the three treatment groups A1 (0 and 45 days), A2 (45 and 90 days), and A3 (0 and 90 days) respectively (VIP > 1, p < 0.05, |log2FC| ≥ 1.1). Carbohydrates, sugar alcohols, amino acids and their derivatives were the main differential metabolites in the LSCKs fermented for different periods. Aminoacyl−tRNA biosynthesis and glycine, serine and threonine metabolism pathways significantly correlated with the differential metabolites based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (p < 0.05). Furthermore, the overall odors were significantly different among the LSCKs with different fermentation periods, as detected by E-nose. The present study describes the change trend of metabolites during LSCK fermentation and elucidates important metabolic pathways in LSCK, providing a theoretical basis for the target regulation of functional metabolites in kohlrabi and the optimization of LSCK processing
Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research
Background The rhesus macaque (RM, Macaca mulatta) is the most important nonhuman primate model in biomedical research. We present the first genomic survey of wild RMs, sequencing 81 geo-referenced individuals of five subspecies from 17 locations in China, a large fraction of the species’ natural distribution. Results Populations were structured into five genetic lineages on the mainland and Hainan Island, recapitulating current subspecies designations. These subspecies are estimated to have diverged 125.8 to 51.3 thousand years ago, but feature recent gene flow. Consistent with the expectation of a larger body size in colder climates and smaller body size in warmer climates (Bergman's rule), the northernmost RM lineage (M. m. tcheliensis), possessing the largest body size of all Chinese RMs, and the southernmost lineage (M. m. brevicaudus), with the smallest body size of all Chinese RMs, feature positively selected genes responsible for skeletal development. Further, two candidate selected genes (Fbp1, Fbp2) found in M. m. tcheliensis are involved in gluconeogenesis, potentially maintaining stable blood glucose levels during starvation when food resources are scarce in winter. The tropical subspecies M. m. brevicaudus showed positively selected genes related to cardiovascular function and response to temperature stimuli, potentially involved in tropical adaptation. We found 118 single-nucleotide polymorphisms matching human disease-causing variants with 82 being subspecies specific. Conclusions These data provide a resource for selection of RMs in biomedical experiments. The demographic history of Chinese RMs and their history of local adaption offer new insights into their evolution and provide valuable baseline information for biomedical investigation
Prospective Evaluation of Geothermal Resources in the Shangqiu Uplift of the Southern North China Basin with Magnetotelluric Detection
The magnetotelluric sounding (MT) method is used to detect and study the deep stratigraphic structure and hidden faults in the Shangqiu Uplift. A total of 4 MT profiles are arranged, and 97 stations are collected. The nonlinear conjugate gradient (NLCG) two-dimensional inversion method is used to jointly invert data from both the TE and TM modes after a dimensionality analysis and impedance tensor decomposition; reliable two-dimensional resistivity models are produced since the data quality is excellent. Three-dimensional inversion is carried out to full impedance tensor as well to produce a three-dimensional resistivity model of the study area, which shows good consistency with the two-dimensional models. The results show that the electrical structure of the Shangqiu Uplift has typical layered characteristics, which can be divided into three layers from top to bottom, namely low-, medium-to-high-, and high-resistivity layers. According to the resistivity models and in combination with the gravity, aeromagnetic, seismic, and regional geological data of the study area, a geological map of the basement rock of the Shangqiu Uplift is produced. Two prospective geothermal anomaly areas are proposed according to the distribution of the high-resistivity anomaly formed by the basement uplift, which has a good corresponding relationship with the high-value area of the regional geothermal field. A geothermal exploration well (SR-1) is constructed in one of the inferred prospective geothermal anomaly areas. The well is 1702 m deep, with a water output of 1500 m3/day and a wellhead water temperature of 51.5 °C. This is the geothermal well with the largest water yield in the Shangqiu area at present, which provides a new basis for future geothermal exploration, development, and utilization
- …