744 research outputs found
Large area projection liquid-crystal video display system with inherent grid pattern optically removed
A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid
Real time pre-detection dynamic range compression
A real time, pre-detection optical dynamic range compression system uses a photorefractive crystal, such as BaTiO3 or LiNbO3, in which light induced scattering from crystal inhomogeneities of the optical input occurs as a nonlinear function of the input intensity. The greater the intensity, the faster random interference gratings are created to scatter the incident light. The unscattered portion of the optical signal is therefore reduced in dynamic range over time. The amount or range of dynamic range compression may be controlled by adjusting the time of application of the unscattered crystal output to the photodetector with regard to the time of application of the optical input to the crystal
Method and apparatus for second-rank tensor generation
A method and apparatus are disclosed for generation of second-rank tensors using a photorefractive crystal to perform the outer-product between two vectors via four-wave mixing, thereby taking 2n input data to a control n squared output data points. Two orthogonal amplitude modulated coherent vector beams x and y are expanded and then parallel sides of the photorefractive crystal in exact opposition. A beamsplitter is used to direct a coherent pumping beam onto the crystal at an appropriate angle so as to produce a conjugate beam that is the matrix product of the vector beam that propagates in the exact opposite direction from the pumping beam. The conjugate beam thus separated is the tensor output xy (sup T)
Unipolar terminal-attractor-based neural associative memory with adaptive threshold and perfect convergence
A perfectly convergent unipolar neural associative-memory system based on nonlinear dynamical terminal attractors is presented. With adaptive setting of the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal attractors, perfect convergence is achieved. This achievement and correct retrieval are demonstrated by computer simulation. The simulations are completed (1) by exhaustive tests with all of the possible combinations of stored and test vectors in small-scale networks and (2) by Monte Carlo simulations with randomly generated stored and test vectors in large-scale networks with an M/N ratio of 4 (M is the number of stored vectors; N is the number of neurons < 256). An experiment with exclusive-oR logic operations with liquid-crystal-television spatial light modulators is used to show the feasibility of an optoelectronic implementation of the model. The behavior of terminal attractors in basins of energy space is illustrated by examples
Self-amplified optical pattern recognition system
A self amplifying optical pattern recognizer includes a geometric system configuration similar to that of a Vander Lugt holographic matched filter configuration with a photorefractive crystal specifically oriented with respect to the input beams. An extraordinarily polarized, spherically converging object image beam is formed by laser illumination of an input object image and applied through a photorefractive crystal, such as a barium titanite (BaTiO.sub.3) crystal. A volume or thin-film dif ORIGIN OF THE INVENTION The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title
Real-time image difference detection using a polarization rotation spacial light modulator
An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies
Optical implementation of inner product neural associative memory
An optical implementation of an inner-product neural associative memory is realized with a first spatial light modulator for entering an initial two-dimensional N-tuple vector and for entering a thresholded output vector image after each iteration until convergence is reached, and a second spatial light modulator for entering M weighted vectors of inner-product scalars multiplied with each of the M stored vectors, where the inner-product scalars are produced by multiplication of the initial input vector in the first iterative cycle (and thresholded vectors in subsequent iterative cycles) with each of the M stored vectors, and the weighted vectors are produced by multiplication of the scalars with corresponding ones of the stored vectors. A Hughes liquid crystal light valve is used for the dual function of summing the weighted vectors and thresholding the sum vector. The thresholded vector is then entered through the first spatial light modulator for reiteration of the process cycle until convergence is reached
Real-time optical multiple object recognition and tracking system and method
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium
Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse
A new nonspreading beam is proposed for the case in which diffraction occurs only in one transverse coordinate. The beam has the shape of a pulse in one dimension and is constant in the other (slitlike shape). The intensity of the pulse’s peak remains almost constant along a finite interval on the propagation axis. The proposed beam is analyzed and demonstrated experimentally. The analogy between this beam and the temporal pulse in a dispersive medium is discussed
Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator
A novel use of liquid-crystal television (LCTV) is described. It is shown that, if the phase nonuniformity of the LCTV is corrected by a liquid gate, then a simple computer-generated hologram can be written and coherently reconstructed
- …