82 research outputs found

    Modelling the Selection of Waiting Areas on Subway Platforms Based on the Bacterial Chemotaxis Algorithm

    Get PDF
    Based on the bacterial chemotaxis algorithm, a new waiting-area selection model (WASM) is proposed that predicts well the pedestrian distribution in subway waiting areas. WASM regards passengers waiting on a subway platform as two-dimensional points and adopts an essential rejection factor to determine the target waiting area. Based on WASM, three experiments were carried out to explore how passenger volume, waiting-area capacity, and staircase position affect the number and distribution of waiting passengers. The experimental results show the following. 1) Regardless of the passenger flow, passengers prefer waiting areas that are between the stairs. 2) Setting proper capacity limits on waiting areas can help to improve subway transportation efficiency when passenger flow is relatively high. 3) The experimental results show that the closer the staircases, the more passengers are left stranded on the platform

    Enhancement of the ν=5/2\nu = 5/2 Fractional Quantum Hall State in a Small In-Plane Magnetic Field

    Get PDF
    Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied the Landau level filling factor ν=5/2\nu = 5/2 fractional quantum Hall effect in a perpendicular magnetic field BB \sim 1.7 T and determined its dependence on tilted magnetic fields. Contrary to all previous results, the 5/2 resistance minimum and the Hall plateau are found to strengthen continuously under an increasing tilt angle 0<θ<250 < \theta < 25^\circ (corresponding to an in-plane magnetic field 0 << BB_\parallel <0.8< 0.8 T). In the same range of θ\theta the activation gaps of both the 7/3 and the 8/3 states are found to increase with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt angle θ>60\theta > 60^\circ, and the composite fermion series [2+p/(2p±1)p/(2p\pm1)], p=p = 1, 2 can be identified. Based on our results, we discuss the relevance of a Skyrmion spin texture at ν=5/2\nu = 5/2 associated with small Zeeman energy in wide quantum wells, as proposed by Woˊ\acute{\text o}js etet alal., Phys. Rev. Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Full text link
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Anomalous Cooper pair interference on Bi2Te3 surface

    Full text link
    It is believed that the edges of a chiral p-wave superconductor host Majorana modes, relating to a mysterious type of fermions predicted seven decades ago. Much attention has been paid to search for p-wave superconductivity in solid-state systems, including recently those with strong spin-orbit coupling (SOC). However, smoking-gun experiments are still awaited. In this work, we have performed phase-sensitive measurements on particularly designed superconducting quantum interference devices constructing on the surface of topological insulators Bi2Te3, in such a way that a substantial portion of the interference loop is built on the proximity-effect-induced superconducting surface. Two types of Cooper interference patterns have been recognized at low temperatures. One is s-wave like and is contributed by a zero-phase loop inhabited in the bulk of Bi2Te3. The other, being identified to relate to the surface states, is anomalous for that there is a phase shift between the positive and negative bias current directions. The results support that the Cooper pairs on the surface of Bi2Te3 have a 2\pi Berry phase which makes the superconductivity p_x+ip_y-wave-like. Mesoscopic hybrid rings as constructed in this experiment are presumably arbitrary-phase loops good for studying topological quantum phenomena.Comment: supplementary material adde
    corecore