69 research outputs found

    GENETIC ANALYSIS OF POLYCOMB GROUP GENE-MEDIATED FLOWERING CONTROL IN ARABIDOPSIS

    Get PDF
    Master'sMASTER OF SCIENC

    Differences in Species Composition of the Soil Seed Banks among Degraded Patches in an Agro-Pastoral Transition Zone in Inner Mongolian Steppe

    Get PDF
    Degraded grasslands were distributed in patches characterized by fringed sagebrush (Artemisia frigida), narrowleaf stellera (Stellera chamaejasme), shining speargrass (Achnatherum splendens), or white swordflag (Iris lactea) at an agro-pastoral transition zone of the south Inner Mongolian steppe, which have been retrogressive from a Leymus chinensis steppe. A control patch (undegraded) was located close to the four degraded patches. We investigated the size, composition, species richness of soil seed banks, and its relation to the aboveground vegetation. The density of soil seed banks was highest in the white swordflag patch, intermediate in the shining speargrass and undegraded patches and lowest in the fringed sagebrush and narrowleaf stellera patches. The percentage of the persistent seed bank in the undegraded patch was higher than those in the four degraded patches. Similarities between the soil seed bank of the undegraded patch and degraded patches and between soil seed banks and standing vegetation of the undegraded patch were all low. The potential for in situ regeneration of the established vegetation of the undegraded patch from the soil seed bank is low in all of these four patches. We can assume that restoration of these habitats can not rely on seed banks alone

    Fast and Resource-Efficient Object Tracking on Edge Devices: A Measurement Study

    Full text link
    Object tracking is an important functionality of edge video analytic systems and services. Multi-object tracking (MOT) detects the moving objects and tracks their locations frame by frame as real scenes are being captured into a video. However, it is well known that real time object tracking on the edge poses critical technical challenges, especially with edge devices of heterogeneous computing resources. This paper examines the performance issues and edge-specific optimization opportunities for object tracking. We will show that even the well trained and optimized MOT model may still suffer from random frame dropping problems when edge devices have insufficient computation resources. We present several edge specific performance optimization strategies, collectively coined as EMO, to speed up the real time object tracking, ranging from window-based optimization to similarity based optimization. Extensive experiments on popular MOT benchmarks demonstrate that our EMO approach is competitive with respect to the representative methods for on-device object tracking techniques in terms of run-time performance and tracking accuracy. EMO is released on Github at https://github.com/git-disl/EMO

    Causal-DFQ: Causality Guided Data-free Network Quantization

    Full text link
    Model quantization, which aims to compress deep neural networks and accelerate inference speed, has greatly facilitated the development of cumbersome models on mobile and edge devices. There is a common assumption in quantization methods from prior works that training data is available. In practice, however, this assumption cannot always be fulfilled due to reasons of privacy and security, rendering these methods inapplicable in real-life situations. Thus, data-free network quantization has recently received significant attention in neural network compression. Causal reasoning provides an intuitive way to model causal relationships to eliminate data-driven correlations, making causality an essential component of analyzing data-free problems. However, causal formulations of data-free quantization are inadequate in the literature. To bridge this gap, we construct a causal graph to model the data generation and discrepancy reduction between the pre-trained and quantized models. Inspired by the causal understanding, we propose the Causality-guided Data-free Network Quantization method, Causal-DFQ, to eliminate the reliance on data via approaching an equilibrium of causality-driven intervened distributions. Specifically, we design a content-style-decoupled generator, synthesizing images conditioned on the relevant and irrelevant factors; then we propose a discrepancy reduction loss to align the intervened distributions of the pre-trained and quantized models. It is worth noting that our work is the first attempt towards introducing causality to data-free quantization problem. Extensive experiments demonstrate the efficacy of Causal-DFQ. The code is available at https://github.com/42Shawn/Causal-DFQ.Comment: Accepted to ICCV202

    Model Sparsification Can Simplify Machine Unlearning

    Full text link
    Recent data regulations necessitate machine unlearning (MU): The removal of the effect of specific examples from the model. While exact unlearning is possible by conducting a model retraining with the remaining data from scratch, its computational cost has led to the development of approximate but efficient unlearning schemes. Beyond data-centric MU solutions, we advance MU through a novel model-based viewpoint: sparsification via weight pruning. Our results in both theory and practice indicate that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. With this insight, we develop two new sparsity-aware unlearning meta-schemes, termed `prune first, then unlearn' and `sparsity-aware unlearning'. Extensive experiments show that our findings and proposals consistently benefit MU in various scenarios, including class-wise data scrubbing, random data scrubbing, and backdoor data forgetting. One highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) in the proposed sparsity-aware unlearning paradigm. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse

    Physical-aware Cross-modal Adversarial Network for Wearable Sensor-based Human Action Recognition

    Full text link
    Wearable sensor-based Human Action Recognition (HAR) has made significant strides in recent times. However, the accuracy performance of wearable sensor-based HAR is currently still lagging behind that of visual modalities-based systems, such as RGB video and depth data. Although diverse input modalities can provide complementary cues and improve the accuracy performance of HAR, wearable devices can only capture limited kinds of non-visual time series input, such as accelerometers and gyroscopes. This limitation hinders the deployment of multimodal simultaneously using visual and non-visual modality data in parallel on current wearable devices. To address this issue, we propose a novel Physical-aware Cross-modal Adversarial (PCA) framework that utilizes only time-series accelerometer data from four inertial sensors for the wearable sensor-based HAR problem. Specifically, we propose an effective IMU2SKELETON network to produce corresponding synthetic skeleton joints from accelerometer data. Subsequently, we imposed additional constraints on the synthetic skeleton data from a physical perspective, as accelerometer data can be regarded as the second derivative of the skeleton sequence coordinates. After that, the original accelerometer as well as the constrained skeleton sequence were fused together to make the final classification. In this way, when individuals wear wearable devices, the devices can not only capture accelerometer data, but can also generate synthetic skeleton sequences for real-time wearable sensor-based HAR applications that need to be conducted anytime and anywhere. To demonstrate the effectiveness of our proposed PCA framework, we conduct extensive experiments on Berkeley-MHAD, UTD-MHAD, and MMAct datasets. The results confirm that the proposed PCA approach has competitive performance compared to the previous methods on the mono sensor-based HAR classification problem.Comment: First IMU2SKELETON GANs approach for wearable HAR problem. arXiv admin note: text overlap with arXiv:2208.0809

    A Multi-task Learning Framework for Head Pose Estimation under Target Motion

    Get PDF
    Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based on Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA-MTL simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on camera geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. Upon determining the target's position using a person tracker at test time, the corresponding region-specific classifier is invoked for HPE. The FEGA-MTL framework naturally extends to a weakly supervised setting where the target's walking direction is employed as a proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single-task and multi-task learning methods in multi-view settings
    corecore