19,494 research outputs found

    Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

    Full text link
    Online music services are increasing in popularity. They enable us to analyze people's music listening behavior based on play logs. Although it is known that people listen to music based on topic (e.g., rock or jazz), we assume that when a user is addicted to an artist, s/he chooses the artist's songs regardless of topic. Based on this assumption, in this paper, we propose a probabilistic model to analyze people's music listening behavior. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling music listening behavior by taking into account the influence of addiction to artists. Second, by using real-world datasets of play logs, we showed the effectiveness of our proposed model. Third, we carried out qualitative experiments and showed that taking addiction into account enables us to analyze music listening behavior from a new viewpoint in terms of how people listen to music according to the time of day, how an artist's songs are listened to by people, etc. We also discuss the possibility of applying the analysis results to applications such as artist similarity computation and song recommendation.Comment: Accepted by The 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2017

    A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property.

    Get PDF
    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase

    Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms.

    Get PDF
    Different toxicity tests for carbon nanotubes (CNT) have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs) become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery

    Extending Hybrid CSP with Probability and Stochasticity

    Full text link
    Probabilistic and stochastic behavior are omnipresent in computer controlled systems, in particular, so-called safety-critical hybrid systems, because of fundamental properties of nature, uncertain environments, or simplifications to overcome complexity. Tightly intertwining discrete, continuous and stochastic dynamics complicates modelling, analysis and verification of stochastic hybrid systems (SHSs). In the literature, this issue has been extensively investigated, but unfortunately it still remains challenging as no promising general solutions are available yet. In this paper, we give our effort by proposing a general compositional approach for modelling and verification of SHSs. First, we extend Hybrid CSP (HCSP), a very expressive and process algebra-like formal modeling language for hybrid systems, by introducing probability and stochasticity to model SHSs, which is called stochastic HCSP (SHCSP). To this end, ordinary differential equations (ODEs) are generalized by stochastic differential equations (SDEs) and non-deterministic choice is replaced by probabilistic choice. Then, we extend Hybrid Hoare Logic (HHL) to specify and reason about SHCSP processes. We demonstrate our approach by an example from real-world.Comment: The conference version of this paper is accepted by SETTA 201
    • …
    corecore