136 research outputs found

    Relationship between TNF-<alpha> Gene Promoter Polymorphisms and Outcomes of Hepatitis B Virus Infections: A Meta-Analysis

    Get PDF
    Background: The clearance of hepatitis B virus (HBV) is a complex process which may be influenced by many factors including polymorphisms in the tumor necrosis factor,alpha. (TNF-,alpha.) gene promoter. However, previous reports regarding the relationship between polymorphisms in the TNF-,alpha. promoter and HBV clearance have been inconsistent. Therefore, we performed a meta-analysis on a large population to address this inconsistency. Methods: A meta-analysis was performed to examine the association between TNF-,alpha. promoter polymorphisms (-1031T/C,-863C/A,-857C/T,-308G/A and-238G/A) and chronic hepatitis B infection. Odds ratio (OR) and its 95 % confidence interval (CI) were used. Results: Twelve studies were chosen in our meta-analysis, involving 2,754 chronic HBV infection cases and 1,630 HBV clearance cases. The data showed that TNF-,alpha.-863 CC genotype was significantly associated with HBV clearance (-863 CC vs. AA: OR, 0.64; 95 % CI, [0.42, 0.97]; p = 0.04) while patients carrying-308 GG genotype had a significantly increased risk of HBV persistence compared with those with GA or AA genotype (GG vs. GA+AA: OR, 1.35; 95 % CI, [1.08, 1.70]; p = 0.01). For the other polymorphisms, no association with HBV infection outcome was found. Conclusions: The data showed that polymorphisms-863 A and-308 G in the TNF-,alpha. gene promoter region might be risk factors for HBV persistence. Furthermore, ethnicity might play an important role in HBV infection outcome, leading t

    FedDCT: A Dynamic Cross-Tier Federated Learning Scheme in Wireless Communication Networks

    Full text link
    With the rapid proliferation of Internet of Things (IoT) devices and the growing concern for data privacy among the public, Federated Learning (FL) has gained significant attention as a privacy-preserving machine learning paradigm. FL enables the training of a global model among clients without exposing local data. However, when a federated learning system runs on wireless communication networks, limited wireless resources, heterogeneity of clients, and network transmission failures affect its performance and accuracy. In this study, we propose a novel dynamic cross-tier FL scheme, named FedDCT to increase training accuracy and performance in wireless communication networks. We utilize a tiering algorithm that dynamically divides clients into different tiers according to specific indicators and assigns specific timeout thresholds to each tier to reduce the training time required. To improve the accuracy of the model without increasing the training time, we introduce a cross-tier client selection algorithm that can effectively select the tiers and participants. Simulation experiments show that our scheme can make the model converge faster and achieve a higher accuracy in wireless communication networks

    Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to help establish heterotic groups of Chinese northern wheat cultivars (lines), Diversity arrays technology (DArT) markers were used to investigate the genetic diversity and population structure of Chinese common wheat (<it>Triticum aestivum </it>L.).</p> <p>Results</p> <p>In total, 1637 of 7000 DArT markers were polymorphic and scored with high confidence among a collection of 111 lines composed mostly of cultivars and breeding lines from northern China. The polymorphism information content (PIC) of DArT markers ranged from 0.03 to 0.50, with an average of 0.40, with P > 80 (reliable markers). With principal-coordinates analysis (PCoA) of DArT data either from the whole genome or from the B-genome alone, all lines fell into one of two major groups reflecting 1RS/1BL type (1RS/1BL and non-1RS/1BL). Evidence of geographic clustering of genotypes was also observed using DArT markers from the A genome. Cluster analysis based on the unweighted pair-group method with algorithmic mean suggested the existence of two subgroups within the non-1RS/1BL group and four subgroups within the 1RS/1BL group. Furthermore, analysis of molecular variance (AMOVA) revealed highly significant (<it>P </it>< 0.001) genetic variance within and among subgroups and among groups.</p> <p>Conclusion</p> <p>These results provide valuable information for selecting crossing parents and establishing heterotic groups in the Chinese wheat-breeding program.</p

    Variability of Gene Expression After Polyhaploidization in Wheat (Triticum aestivum L.)

    Get PDF
    Interspecific hybridization has a much greater effect than chromosome doubling on gene expression; however, the associations between homeologous gene expression changes and polyhaploidization had rarely been addressed. In this study, cDNA–single strand conformation polymorphism analysis was applied to measure the expression of 30 homeologous transcripts in naturally occurring haploid (ABD, 2n = 21) and its polyploid maternal parent Yumai 21A (AABBDD, 2n = 42) in wheat. Only one gene (TC251989) showed preferentially silenced homoeoalleles in haploids. Further analyses of 24 single-copy genes known to be silenced in the root and/or leaf also found no evidence of homeologous silencing in 1-month-old haploids and two ESTs (BF484100 and BF473379) exhibit different expression patterns between 4-month-old haploids and hexaploids. Global analysis of the gene expression patterns using the Affymetrix GeneChip showed that of the 55,052 genes probed, only about 0.11% in the shoots and 0.25% in the roots were activated by polyhaploidization. The results demonstrate that activation and silencing of homoeoalleles were not widespread in haploid seedlings

    Analysis of risk factors for deep vein thrombosis after spinal infection surgery and construction of a nomogram preoperative prediction model

    Get PDF
    ObjectiveTo investigate the differences in postoperative deep venous thrombosis (DVT) between patients with spinal infection and those with non-infected spinal disease; to construct a clinical prediction model using patients’ preoperative clinical information and routine laboratory indicators to predict the likelihood of DVT after surgery.MethodAccording to the inclusion criteria, 314 cases of spinal infection (SINF) and 314 cases of non-infected spinal disease (NSINF) were collected from January 1, 2016 to December 31, 2021 at Xiangya Hospital, Central South University, and the differences between the two groups in terms of postoperative DVT were analyzed by chi-square test. The spinal infection cases were divided into a thrombotic group (DVT) and a non-thrombotic group (NDVT) according to whether they developed DVT after surgery. Pre-operative clinical information and routine laboratory indicators of patients in the DVT and NDVT groups were used to compare the differences between groups for each variable, and variables with predictive significance were screened out by least absolute shrinkage and operator selection (LASSO) regression analysis, and a predictive model and nomogram of postoperative DVT was established using multi-factor logistic regression, with a Hosmer- Lemeshow goodness-of-fit test was used to plot the calibration curve of the model, and the predictive effect of the model was evaluated by the area under the ROC curve (AUC).ResultThe incidence of postoperative DVT in patients with spinal infection was 28%, significantly higher than 16% in the NSINF group, and statistically different from the NSINF group (P &lt; 0.000). Five predictor variables for postoperative DVT in patients with spinal infection were screened by LASSO regression, and plotted as a nomogram. Calibration curves showed that the model was a good fit. The AUC of the predicted model was 0.8457 in the training cohort and 0.7917 in the validation cohort.ConclusionIn this study, a nomogram prediction model was developed for predicting postoperative DVT in patients with spinal infection. The nomogram included five preoperative predictor variables, which would effectively predict the likelihood of DVT after spinal infection and may have greater clinical value for the treatment and prevention of postoperative DVT

    Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.)

    Get PDF
    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli–tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes

    New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    Get PDF
    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding
    corecore