6,147 research outputs found
Mixed (s+id)-wave order parameters in the Van Hove scenario
In the Van Hove scenario including orthorhombic distortion effect, we develop a pair of coupled gap equations for the mixed (s+id)-wave order parameter. It is found that a mixed s+id symmetry state is realized in a certain range of relative strength of the s and d interactions, and there are two second-order transitions between the mixed and the pure symmetry states. Particular attention is paid to the temperature dependence of two components in the mixed order parameter as well as their evolution from a pure s to a pure d symmetry state.published_or_final_versio
Hydrostatic pressure induced Dirac semimetal in black phosphorus
Motivated by recent experimental observation of an hydrostatic pressure
induced transition from semiconductor to semimetal in black phosphorus [Chen et
al. in arXiv:1504.00125], we present the first principles calculation on the
pressure effect of the electronic structures of black phosphorus. It is found
that the band crossover and reversal at the Z point occur around the critical
pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate
Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further
increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma
point and evolve into two hole-type Fermi pockets, and those in the Z-M lines
move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0
Gpa. It demonstrates clearly that the Lifshitz transition occurs at
from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space
symmetry of bulk. This suggests the bright perspective of black phosphorus for
optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table
The quasi-one-dimensional character of spin waves in K2Fe7Se8
published_or_final_versio
Thermoelectric power of hot carriers in the nonequilibrium-statistical- operator approach
The thermoelectric power of charge carriers heated under a strong applied electric field in semiconductors is obtained by use of the nonequilibrium- statistical-operator (NSO) method. The balance equations are derived in terms of the NSO density matrix and the force-force correlation functions which can easily be calculated for a system with electron-impurity and electron-phonon interactions. A numerical study has been performed for hole-doped Ge. It is shown that the hot-electron thermoelectric power is sensitively affected by the applied electric field and that its sign is reversed at higher electric fields. © 1995 The American Physical Society.published_or_final_versio
Explainable deep learning for insights in El Ni\~no and river flows
The El Ni\~no Southern Oscillation (ENSO) is a semi-periodic fluctuation in
sea surface temperature (SST) over the tropical central and eastern Pacific
Ocean that influences interannual variability in regional hydrology across the
world through long-range dependence or teleconnections. Recent research has
demonstrated the value of Deep Learning (DL) methods for improving ENSO
prediction as well as Complex Networks (CN) for understanding teleconnections.
However, gaps in predictive understanding of ENSO-driven river flows include
the black box nature of DL, the use of simple ENSO indices to describe a
complex phenomenon and translating DL-based ENSO predictions to river flow
predictions. Here we show that eXplainable DL (XDL) methods, based on saliency
maps, can extract interpretable predictive information contained in global SST
and discover SST information regions and dependence structures relevant for
river flows which, in tandem with climate network constructions, enable
improved predictive understanding. Our results reveal additional information
content in global SST beyond ENSO indices, develop understanding of how SSTs
influence river flows, and generate improved river flow prediction, including
uncertainty estimation. Observations, reanalysis data, and earth system model
simulations are used to demonstrate the value of the XDL-CN based methods for
future interannual and decadal scale climate projections
On the inverse Compton scattering model of radio pulsars
Some characteristics of the inverse Compton scattering (ICS) model are
reviewed. At least the following properties of radio pulsars can be reproduced
in the model: core or central emission beam, one or two hollow emission cones,
different emission heights of these components, diverse pulse profiles at
various frequencies, linear and circular polarization features of core and
cones.Comment: 5 pages, no figures, LaTeX, a proceeding paper for Pacific Rim
Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin
Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
Highly nonlinear structures and constituent materials and hazardous experiment situations have resulted in a pressing need for a numerical mechanical model for lithium-ion battery (LIB). However, such a model is still not well established. In this paper, an anisotropic homogeneous model describing the jellyroll and the battery shell is established and validated through compression, indentation, and bending tests at quasi-static loadings. In this model, state-of-charge (SOC) dependency of the LIB is further included through an analogy with the strain-rate effect. Moreover, with consideration of the inertia and strain rate effects, the anisotropic homogeneous model is extended into the dynamic regime and proven capable of predicting the dynamic response of the LIB using the drop-weight test. The established model may help to predict extreme cases with high SOCs and crashing speeds with an over 135% improved accuracy compared to traditional models. The established coupled strain rate and SOC dependencies of the numerical mechanical model for the LIB aims to provide a solid step toward unraveling and quantifying the complicated problems for research on LIB mechanical integrity. (C) 2016 Elsevier Ltd. All rights reserved
Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2
2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe
High-efficiency Urban-traffic Management in Context-aware Computing and 5G Communication
With the increasing number of vehicle and traffic jams, urban-traffic management is becoming a serious issue. In this article, we propose novel four-tier architecture for urban-traffic management with the convergence of vehicle ad hoc networks (VANETs), 5G wireless network, software-defined network (SDN), and mobile-edge computing (MEC) technologies. The proposed architecture provides better communication and rapider responsive speed in a more distributed and dynamic manner. The practical case of rapid accident rescue can significantly cut down the time for rescue. Key technologies with respect to vehicle localization, data pre-fetching, traffic lights control, and traffic prediction are also discussed. Obviously, the novel architecture shows noteworthy potential for alleviating the traffic congestion and improving the efficiency of urban-traffic management
- …