108 research outputs found

    Advanced control for miniature helicopters : modelling, design and flight test

    Get PDF
    Unmanned aerial vehicles (UAV) have been receiving unprecedented development during the past two decades. Among different types of UAVs, unmanned helicopters exhibit promising features gained from vertical-takeoff-and-landing, which make them as a versatile platform for both military and civil applications. The work reported in this thesis aims to apply advanced control techniques, in particular model predictive control (MPC), to an autonomous helicopter in order to enhance its performance and capability. First, a rapid prototyping testbed is developed to enable indoor flight testing for miniature helicopters. This testbed is able to simultaneously observe the flight state, carry out complicated algorithms and realtime control of helicopters all in a Matlab/Simulink environment, which provides a streamline process from algorithm development, simulation to flight tests. Next, the modelling and system identification for small-scale helicopters are studied. A parametric model is developed and the unknown parameters are estimated through the designed identification process. After a mathematical model of the selected helicopter is available, three MPC based control algorithms are developed focusing on different aspects in the operation of autonomous helicopters. The first algorithm is a nonlinear MPC framework. A piecewise constant scheme is used in the MPC formulation to reduce the intensive computation load. A two-level framework is suggested where the nonlinear MPC is combined with a low-level linear controller to allow its application on the systems with fast dynamics. The second algorithm solves the local path planning and the successive tracking control by using nonlinear and linear MPC, respectively. The kinematics and obstacle information are incorporated in the path planning, and the linear dynamics are used to design a flight controller. A guidance compensator dynamically links the path planner and flight controller. The third algorithm focuses on the further reduction of computational load in a MPC scheme and the trajectory tracking control in the presence of uncertainties and disturbances. An explicit nonlinear MPC is developed for helicopters to avoid online optimisation, which is then integrated with a nonlinear disturbance observer to significantly improve its robustness and disturbance attenuation. All these algorithms have been verified by flight tests for autonomous helicopters in the dedicated rapid prototyping testbed developed in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Disturbance rejection flight control for small fixed-wing unmanned aerial vehicles

    Get PDF
    Disturbance rejection flight control for small fixed-wing unmanned aerial vehicle

    Dual Control for Exploitation and Exploration (DCEE) in Autonomous Search

    Full text link
    This paper proposes an optimal autonomous search framework, namely Dual Control for Exploration and Exploitation (DCEE), for a target at unknown location in an unknown environment. Source localisation is to find sources of atmospheric hazardous material release in a partially unknown environment. This paper proposes a control theoretic approach to this autonomous search problem. To cope with an unknown target location, at each step, the target location is estimated by Bayesian inference. Then a control action is taken to minimise the error between future robot position and the hypothesised future estimation of the target location. The latter is generated by hypothesised measurements at the corresponding future robot positions (due to the control action) with the current estimation of the target location as a prior. It shows that this approach can take into account both the error between the next robot position and the estimate of the target location, and the uncertainty of the estimate. This approach is further extended to the case with not only an unknown source location, but also an unknown local environment (e.g. wind speed and direction). Different from current information theoretic approaches, this new control theoretic approach achieves the optimal trade-off between exploitation and exploration in a unknown environment with an unknown target by driving the robot moving towards estimated target location while reducing its estimation uncertainty. This scheme is implemented using particle filtering on a mobile robot. Simulation and experimental studies demonstrate promising performance of the proposed approach. The relationships between the proposed approach, informative path planning, dual control, and classic model predictive control are discussed and compared

    Optimization-based safety analysis of obstacle avoidance systems for unmanned aerial vehicles

    Get PDF
    The integration of Unmanned Aerial Vehicles (UAVs) in airspace requires new methods to certify collision avoidance systems. This paper presents a safety clearance process for obstacle avoidance systems, where worst case analysis is performed using simulation based optimization in the presence of all possible parameter variations. The clearance criterion for the UAV obstacle avoidance system is defined as the minimum distance from the aircraft to the obstacle during the collision avoidance maneuver. Local and global optimization based verification processes are developed to automatically search the worst combinations of the parameters and the worst-case distance between the UAV and an obstacle under all possible variations and uncertainties. Based on a 6 Degree of Freedom (6DoF) kinematic and dynamic model of a UAV, the path planning and collision avoidance algorithms are developed in 3D space. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is a simple and widely used method. Different optimization algorithms are applied and compared in terms of the reliability and efficiency

    Autonomous search of an airborne release in urban environments using informed tree planning

    Full text link
    The use of autonomous vehicles for chemical source localisation is a key enabling tool for disaster response teams to safely and efficiently deal with chemical emergencies. Whilst much work has been performed on source localisation using autonomous systems, most previous works have assumed an open environment or employed simplistic obstacle avoidance, separate to the estimation procedure. In this paper, we explore the coupling of the path planning task for both source term estimation and obstacle avoidance in a holistic framework. The proposed system intelligently produces potential gas sampling locations based on the current estimation of the wind field and the local map. Then a tree search is performed to generate paths toward the estimated source location that traverse around any obstacles and still allow for exploration of potentially superior sampling locations. The proposed informed tree planning algorithm is then tested against the Entrotaxis technique in a series of high fidelity simulations. The proposed system is found to reduce source position error far more efficiently than Entrotaxis in a feature rich environment, whilst also exhibiting vastly more consistent and robust results

    Information based mobile sensor planning for source term estimation of a non-continuous atmospheric release

    Get PDF
    This paper presents a method to estimate the original location and the mass of an instantaneous release of hazardous material into the atmosphere. It is formulated as an inverse problem, where concentration observations from a mobile sensor are fused with meteorological information and a Gaussian puff dispersion model to characterise the source. Bayes’ theorem is used to estimate the parameters of the release taking into account the uncertainty that exists in the dispersion parameters and meteorological variables. An information based reward is used to guide an unmanned aerial vehicle equipped with a chemical sensor to the expected most informative measurement locations. Simulation results compare the performance between a single mobile sensor with various amounts of static sensors

    Boustrophedon coverage path planning for UAV aerial surveys in wind

    Get PDF
    © 2017 IEEE. In the quickly developing world of precision agriculture UAV remote sensing, there is a need for a greater understanding of winds effect on fixed wing aerial surveying, as this is missing from current literature. This paper presents a method to define and calculate flight times in a Boustrophedon aerial survey coverage path in wind, for a given convex polygon, at a given sweep angle. It is shown that there exists no easy way to define a sweep angle relative to the wind that minimises flight time. This method is validated by comparing the numerical simulated path and times with a number of surveys run in the high fidelity X-Plane simulator
    • …
    corecore