4,267 research outputs found

    Soliton microcomb based spectral domain optical coherence tomography

    Full text link
    Spectral domain optical coherence tomography (SD-OCT) is a widely used and minimally invaive technique for bio-medical imaging [1]. SD-OCT typically relies on the use of superluminescent diodes (SLD), which provide a low-noise and broadband optical spectrum. Recent advances in photonic chipscale frequency combs [2, 3] based on soliton formation in photonic integrated microresonators provide an chipscale alternative illumination scheme for SD-OCT. Yet to date, the use of such soliton microcombs in OCT has not yet been analyzed. Here we explore the use of soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial SLDs are possible. We demonstrate that the soliton states in microresonators exhibit a noise floor that is ca. 3 dB lower than for the SLD at identical power, but can exhibit significantly lower noise performance for powers at the milliWatt level. We perform SD-OCT imaging on an ex vivo fixed mouse brain tissue using the soliton microcomb, alongside an SLD for comparison, and demonstrate the principle viability of soliton based SD-OCT. Importantly, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e. common mode, in contrast to SLD or incoherent microcomb states [4], which should, in theory, improve the image quality. Moreover, we demonstrate the potential for circular ranging, i.e. optical sub-sampling [5, 6], due to the high coherence and temporal periodicity of the soliton state. Taken together, our work indicates the promising properties of soliton microcombs for SD-OCT

    Trade-offs and Optimisation of Land-Use for Pastoralism and Carbon in Southeastern Australia

    Get PDF
    Globally, pressure to ensure future food security is being challenged by competing needs for multiple land-uses in agricultural systems. Rangelands are both a source of greenhouse gas emissions as well as providing opportunities for emissions reduction. Carbon farming is a new land-use option that sequesters carbon in vegetation and soils. National incentive programs in Australia for this option have resulted in significant recent land-use change across Australian rangelands. Beyond the mitigation benefits, the potential for carbon farming income to enhance socio-ecological resilience in rangelands has been identified. However, there are major uncertainties about the impacts of climate change on sequestration rates and trade-offs between land-use for carbon and pastoral production. The AUD2.45billionCommonwealthEmissionsReductionFundhasdrivenrecentland−usechangeandafurtherAUD2.45 billion Commonwealth Emissions Reduction Fund has driven recent land-use change and a further AUD2 billion over the next 10 years, coupled with a fast-growing secondary carbon market is continuing to drive demand for carbon credits. The ability to supply these carbon credits and meet international emissions reduction obligations but limit the trade-offs with pastoral production can be supported through an identification of spatial prioritisation and optimisation at a landscape scale. We use a case study of New South Wales where ~3 million ha of traditional rangeland pastoralism is currently delivering ~27% of the national land sector abatement. Priority areas and optimisation of land-use for carbon farming and production under current and future climates were determined by developing a Carbon Optimisation Model (COM). This high-resolution integrated environmental-economic model provides predictions of spatiotemporal dynamics of land-use options for variations of incentive payment levels and policy settings. Regional downscaling of an ensemble of global circulation models (GCMs) were used to predict the climate impacts on future sequestration rates derived from 3PG forest growth model to quantify carbon supply under future climates. The COM can be used to produce spatial maps to underpin strategic prioritisation abatement activities and allow abatement opportunities to be incorporated into regional NRM planning

    Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model

    Get PDF
    Exposure to ambient air pollution has been associated with white matter damage and neurocognitive decline. However, the mechanisms of this injury are not well understood and remain largely uncharacterized in experimental models. Prior studies have shown that exposure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation, specifically the upregulation of inflammatory microglia. This study examines white matter and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic diameter ≤200 nm) consisting primarily of traffic-related emissions was collected from an urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group). Microglia were characterized by immunohistochemical double staining of ionized calcium-binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeostatic cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligodendrocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia were significantly increased in the corpus callosum of mice exposed to nPM when compared to those exposed to filtered air (2.2 fold increase; p\u3c0.05). This was accompanied by an increase in dMBP (1.4 fold increase; p\u3c0.05) immunofluorescent density, a decrease in oligodendrocyte cell counts (1.16 fold decrease; p\u3c0.05), and a decrease in neurofilament SMI-312 (1.13 fold decrease; p\u3c0.05) immunofluorescent density. Exposure to nPM results in increased inflammatory microglia, white matter injury, and axonal degradation in the corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reactive oxygen/ nitrogen species which may further contribute to the white matter damage observed in this model

    Oxaliplatin-induced loss of phosphorylated heavy neurofilament subunit neuronal immunoreactivity in rat DRG tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG) tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel.</p> <p>Results</p> <p>After treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H) immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; <it>P </it>< 0.0002) and size (-45%; <it>P </it>< 0.0001) of pNF-H-immunoreactive neurons after oxaliplatin treatment. pNF-H-immunoreactive neurons had overlapping size profiles and co-localisation with neurons displaying cell body immunoreactivity for parvalbumin, non-phospho-specific neurofilament medium subunit (NF-M) and non-phospho-specific neurofilament heavy subunit (NF-H), in control DRG. However, there were no significant changes in the numbers of neurons with immunoreactivity for parvalbumin (4.6%, <it>P </it>= 0.82), NF-M (-1%, <it>P </it>= 0.96) or NF-H (0%; <it>P </it>= 0.93) after oxaliplatin treatment, although the sizes of parvalbumin (-29%, <it>P </it>= 0.047), NF-M (-11%, <it>P </it>= 0.038) and NF-H (-28%; <it>P </it>= 0.0033) immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; <it>P </it>< 0.0001) and cisplatin (-35.2%; <it>P </it>= 0.03) but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; <it>P </it>= 0.008) but not by cisplatin, carboplatin or paclitaxel.</p> <p>Conclusion</p> <p>This study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.</p

    Air Pollution Particulate Matter Amplifies White Matter Vascular Pathology and Demyelination Caused by Hypoperfusion

    Get PDF
    Cerebrovascular pathologies are commonly associated with dementia. Because air pollution increases arterial disease in humans and rodent models, we hypothesized that air pollution would also contribute to brain vascular dysfunction. We examined the effects of exposing mice to nanoparticulate matter (nPM; aerodynamic diameter ≤200 nm) from urban traffic and interactions with cerebral hypoperfusion. C57BL/6 mice were exposed to filtered air or nPM with and without bilateral carotid artery stenosis (BCAS) and analyzed by multiparametric MRI and histochemistry. Exposure to nPM alone did not alter regional cerebral blood flow (CBF) or blood brain barrier (BBB) integrity. However, nPM worsened the white matter hypoperfusion (decreased CBF on DSC-MRI) and exacerbated the BBB permeability (extravascular IgG deposits) resulting from BCAS. White matter MRI diffusion metrics were abnormal in mice subjected to cerebral hypoperfusion and worsened by combined nPM+BCAS. Axonal density was reduced equally in the BCAS cohorts regardless of nPM status, whereas nPM exposure caused demyelination in the white matter with or without cerebral hypoperfusion. In summary, air pollution nPM exacerbates cerebrovascular pathology and demyelination in the setting of cerebral hypoperfusion, suggesting that air pollution exposure can augment underlying cerebrovascular contributions to cognitive loss and dementia in susceptible elderly populations

    TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma

    Get PDF
    BACKGROUND: Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS: We employed single-cell PCR to isolate a TCR specific for the Imp3 RESULTS: We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS: We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma
    • …
    corecore