291 research outputs found

    Existence Results for a Coupled System of Nonlinear Fractional Boundary Value Problems at Resonance

    Get PDF
    Some new Banach spaces are established. Based on those new Banach spaces and by using the coincidence degree theory, we present the existence results for a coupled system of nonlinear fractional differential equations with multipoint boundary value conditions at resonance case

    A common framework of partition-based clustering for large scale dataset using sampling and its MapReduce implementation

    Get PDF
    Grupiranje (clustering) je jedan od važnih zadataka u rudarenu podataka (data mining), a algoritmi grupiranja utemeljenog na raspodjeli kao što su k-način jedno su od popularnih rješenja. Ipak, sve većim razvojem računarstva u oblaku i ogromne količine podataka, prijenos velikog broja podataka postao je veliki izazov za grupiranje. Na primjer, izvođenje algoritma grupiranja oduzima previše vremena, optimizacija parametara je teška, a kvaliteta grupa (klastera) nije dobra. U tu smo svrhu u ovom radu predložili uobičajeni okvir za algoritme grupiranja utemeljenog na raspodjeli kao što su k-način i dizajnirali njegovu MapReduce implementaciju. Posebice smo, u svrhu predstavljanja prijenosa velikog broja podataka, predložili primjenu tehnike uzorkovanja. Zatim, koristeći k-način algoritam, predlažemo uobičajeni postupak grupiranja i opisujemo primjenu na temelju k-način algoritma. Nadalje, implementiramo predloženi okvir primjenom MapReduce modela programiranja. Eksperimenti pokazuju da je naša metoda učinkovita za prijenos velikog broja podataka.Clustering is one of the significant tasks in data mining, and partition-based clustering algorithms such as k-means are one of the popular solutions. However, with the increasing development of cloud computing and big data, large scale dataset has been a big challenge for clustering. For example, the execution of clustering algorithm is too time-consuming, the optimization of parameters is difficult, and the quality of clusters is not good. To this end, in this paper, we proposed a common framework of partition-based clustering algorithms such as k-means, and designed its MapReduce implementation. Specifically, in order to deal with the representation of large scale dataset, we propose to employ sampling technique. Then, inspired by k-means algorithm, we propose a common procedure of clustering, and provide a k-means based implementation. Furthermore, we implement proposed framework using MapReduce programming model. Experiments show that our method is efficient for large scale dataset

    Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging.

    Get PDF
    Mechanistic understanding of the endocytosis and intracellular trafficking of nanoparticles is essential for designing smart theranostic carriers. Physico-chemical properties, including size, clustering and surface chemistry of nanoparticles regulate their cellular uptake and transport. Significantly, even single nanoparticles could cluster intracellularly, yet their clustering state and subsequent trafficking are not well understood. Here, we used DNA-decorated gold (fPlas-gold) nanoparticles as a dually emissive fluorescent and plasmonic probe to examine their clustering states and intracellular transport. Evidence from correlative fluorescence and plasmonic imaging shows that endocytosis of fPlas-gold follows multiple pathways. In the early stages of endocytosis, fPlas-gold nanoparticles appear mostly as single particles and they cluster during the vesicular transport and maturation. The speed of encapsulated fPlas-gold transport was critically dependent on the size of clusters but not on the types of organelle such as endosomes and lysosomes. Our results provide key strategies for engineering theranostic nanocarriers for efficient health management

    Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures

    Get PDF
    Three dimensional scaffolded DNA origami with inorganic nanoparticles has been used to create tailored multidimensional nanostructures. However, the image contrast of DNA is poorer than those of the heavy nanoparticles in conventional transmission electron microscopy at high defocus so that the biological and non-biological components in 3D scaffolds cannot be simultaneously resolved using tomography of samples in a native state. We demonstrate the use of electron ptychography to recover high contrast phase information from all components in a DNA origami scaffold without staining. We further quantitatively evaluate the enhancement of contrast in comparison with conventional transmission electron microscopy. In addition, We show that for ptychography post-reconstruction focusing simplifies the workflow and reduces electron dose and beam damage

    Multiparametric MRI in differentiating pulmonary artery sarcoma and pulmonary thromboembolism: a preliminary experience

    Get PDF
    PURPOSE:We aimed to define multiparametric magnetic resonance imaging (MRI) findings to differentiate between pulmonary artery sarcoma (PAS) and pulmonary thromboembolism (PTE).METHODS:Eleven patients with suspected PTE were prospectively included to undergo pulmonary MRI before surgery or biopsy. MRI protocol included an unenhanced sequence, diffusion-weighted imaging (DWI, b=800 s/mm2) and a dynamic contrast-enhanced sequence. Morphologic characteristics including distribution, filling defect, and intensity were observed on T1-, T2-, and fat-suppressed T2-weighted imaging, DWI, and contrast-enhanced MRI. Apparent diffusion coefficient (ADC) values were calculated.RESULTS:Six patients were pathologically diagnosed as PAS and the other five as chronic PTE. There were no significant differences in age, gender, presenting symptoms, D-dimer, and N-terminal pro-brain natriuretic peptide between the two groups (P > 0.05). Among MRI findings that were tested for their ability to diagnose PAS, area under the curve (AUC) was significantly higher than 0.5 for main pulmonary artery involvement (AUC, 0.83±0.13; P = 0.011), hyperintensity on fat-suppressed T2-weighted imaging (AUC, 0.82±0.14; P = 0.025), hyperintensity on DWI (AUC, 0.88±0.12; P = 0.002), contrast enhancement (AUC, 0.92±0.10; P < 0.001) and pleural effusion (AUC, 0.82±0.14; P = 0.025). Moreover, grape-like appearance in distal pulmonary artery and cardiac invasion had 100% specificity for diagnosis of PAS. However, ADC value of PAS was not significantly different than that of chronic PTE (U, 12.00; P = 0.584).CONCLUSION:Hyperintense filling defect in main pulmonary artery on fat-suppressed T2-weighted imaging and DWI and contrast enhancement may help to discriminate PAS from PTE

    Photometric calibration of the Stellar Abundance and Galactic Evolution Survey (SAGES): Nanshan One-meter Wide-field Telescope g, r, and i band imaging data

    Full text link
    In this paper, a total of approximately 2.6 million dwarfs were constructed as standard stars, with an accuracy of about 0.01-0.02 mag for each band, by combining spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope Data Release 7, photometric data from the corrected Gaia Early Data Release 3, and photometric metallicities. Using the spectroscopy based stellar color regression method (SCR method) and the photometric-based SCR method (SCR' method), we performed the relative calibration of the Nanshan One-meter Wide-field Telescope imaging data. Based on the corrected Pan-STARRS DR1 photometry, the absolute calibration was also performed. In the photometric calibration process, we analyzed the dependence of the calibration zero points on different images (observation time), different gates of the CCD detector, and different CCD positions. We found that the stellar flat and the relative gain between different gates depend on time. The amplitude of gain variation in three channels is approximately 0.5%-0.7% relative to the other channel, with a maximum value of 4%. In addition, significant spatial variations of the stellar flat fitting residual are found and corrected. Using repeated sources in the adjacent images, we checked and discovered internal consistency of about 1-2 mmag in all the filters. Using the PS1 magnitudes synthesized by Gaia DR3 BP/RP spectra by the synthetic photometry method, we found that the photometric calibration uniformity is about 1-2 mmag for all the bands, at a spatial resolution of 1.3 degree. A detailed comparison between the spectroscopy-based SCR and photometric-based SCR method magnitude offsets was performed, and we achieved an internal consistency precision of about 2 mmag or better with resolutions of 1.3 degree for all the filters. Which is mainly from the position-dependent errors of the E(B-V) used in SCR' method.Comment: 15 pages in Chinese language, 8 figures, Chinese Science Bulletin accepted and published online (https://www.sciengine.com/CSB/doi/10.1360/TB-2023-0052), see main results in Figures 6, 7 and
    corecore