6,607 research outputs found
Cooling mechanical resonators to quantum ground state from room temperature
Ground-state cooling of mesoscopic mechanical resonators is a fundamental
requirement for test of quantum theory and for implementation of quantum
information. We analyze the cavity optomechanical cooling limits in the
intermediate coupling regime, where the light-enhanced optomechanical coupling
strength is comparable with the cavity decay rate. It is found that in this
regime the cooling breaks through the limits in both the strong and weak
coupling regimes. The lowest cooling limit is derived analytically at the
optimal conditions of cavity decay rate and coupling strength. In essence,
cooling to the quantum ground state requires , with being the mechanical quality factor and
being the thermal phonon number. Remarkably, ground-state
cooling is achievable starting from room temperature, when mechanical
-frequency product , and both of the
cavity decay rate and the coupling strength exceed the thermal decoherence
rate. Our study provides a general framework for optimizing the backaction
cooling of mesoscopic mechanical resonators
Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films
Journal ArticleWe demonstrate an approach for determining the "effective" Ehrlich-Schwoebel (ES) step-edge barrier, an important kinetic constant to control the interlayer mass transport in epitaxial growth of thin films. The approach exploits the rate difference between the growth and/or decay of an adatom and a vacancy two-dimensional island, which allows the "effective" ES barrier to be determined uniquely by fitting with a single parameter. Application to growth of Pb islands produces an effective ES barrier of ~83±10 meV on Pb(111) surface at room temperature
Fabricating artificial nanowells with tunable size and shape by using scanning tunneling microscopy
Journal ArticleThe authors report a method of precisely fabricating the large-scale nanocrystals with well-defined shape and size. The (111) oriented Pb islands deposited on Si(111)-7x7 substrate were investigated with a manipulation technique based on scanning tunneling microscopy. By applying a series of voltage pulses on the as-grown islands, artificial center-full-hollowed or half-hollowed nanowells are created, and the thickness and shape can be precisely regulated via tuning the manipulation parameters. Artificial nanoarray patterns in micron scale are also constructed using this method
Influence of quantum size effects on Pb island growth and diffusion barrier oscillations
Journal ArticleQuantum size effects are successfully exploited in manipulating the growth of (111) oriented Pb islands on Si(111) substrate with a scanning tunneling microscope. The growth dynamics and morphology displayed can be well controlled through the quantum size effects defined by the island thicknesses and the interplay with the classical forces. The transition of growth modes from quantum to classical regime and the quantum beating in morphological dynamics are directly identified in real space and quantitatively analyzed. Atomic diffusion barriers, an important parameter in the thin film growth process, are also demonstrated to be modified by quantum size effects, and oscillate with a two-monolayer periodicity
Dynamic dissipative cooling of a mechanical oscillator in strong-coupling optomechanics
Cooling of mesoscopic mechanical resonators represents a primary concern in
cavity optomechanics. Here in the strong optomechanical coupling regime, we
propose to dynamically control the cavity dissipation, which is able to
significantly accelerate the cooling process while strongly suppressing the
heating noise. Furthermore, the dynamic control is capable of overcoming
quantum backaction and reducing the cooling limit by several orders of
magnitude. The dynamic dissipation control provides new insights for tailoring
the optomechanical interaction and offers the prospect of exploring macroscopic
quantum physics.Comment: accepetd in Physical Review Letter
Recommended from our members
Metabolic Pathways Enhancement Confers Poor Prognosis in p53 Exon Mutant Hepatocellular Carcinoma.
RNA-Sequencing (RNA-Seq), the most commonly used sequencing application tool, is not only a method for measuring gene expression but also an excellent media to detect important structural variants such as single nucleotide variants (SNVs), insertion/deletion (Indels), or fusion transcripts. The Cancer Genome Atlas (TCGA) contains genomic data from a variety of cancer types and also provides the raw data generated by TCGA consortium. p53 is among the top 10 somatic mutations associated with hepatocellular carcinoma (HCC). The aim of the present study was to analyze concordant different gene profiles and the priori defined set of genes based on p53 mutation status in HCC using RNA-Seq data. In the study, expression profile of 11 799 genes on 42 paired tumor and adjacent normal tissues was collected, processed, and further stratified by the mutated versus normal p53 expression. Furthermore, we used a knowledge-based approach Gene Set Enrichment Analysis (GSEA) to compare between normal and p53 mutation gene expression profiles. The statistical significance (nominal P value) of the enrichment score (ES) genes was calculated. The ranked gene list that reflects differential expression between p53 wild-type and mutant genotypes was then mapped to metabolic process by KEGG, an encyclopedia of genes and genomes to assign functional meanings. These approaches enable us to identify pathways and potential target gene/pathways that are highly expressed in p53 mutated HCC. Our analysis revealed 2 genes, the hexokinase 2 (HK2) and Enolase 1 (ENO1), were conspicuous of red pixel in the heatmap. To further explore the role of these genes in HCC, the overall survival plots by Kaplan-Meier method were performed for HK2 and ENO1 that revealed high HK2 and ENO1 expression in patients with HCC have poor prognosis. These results suggested that these glycolysis genes are associated with mutated-p53 in HCC that may contribute to poor prognosis. In this proof-of-concept study, we proposed an approach for identifying novel potential therapeutic targets in human HCC with mutated p53. These approaches can take advantage of the massive next-generation sequencing (NGS) data generated worldwide and make more out of it by exploring new potential therapeutic targets
- …