6,000 research outputs found

    Revisiting the problem of audio-based hit song prediction using convolutional neural networks

    Full text link
    Being able to predict whether a song can be a hit has impor- tant applications in the music industry. Although it is true that the popularity of a song can be greatly affected by exter- nal factors such as social and commercial influences, to which degree audio features computed from musical signals (whom we regard as internal factors) can predict song popularity is an interesting research question on its own. Motivated by the recent success of deep learning techniques, we attempt to ex- tend previous work on hit song prediction by jointly learning the audio features and prediction models using deep learning. Specifically, we experiment with a convolutional neural net- work model that takes the primitive mel-spectrogram as the input for feature learning, a more advanced JYnet model that uses an external song dataset for supervised pre-training and auto-tagging, and the combination of these two models. We also consider the inception model to characterize audio infor- mation in different scales. Our experiments suggest that deep structures are indeed more accurate than shallow structures in predicting the popularity of either Chinese or Western Pop songs in Taiwan. We also use the tags predicted by JYnet to gain insights into the result of different models.Comment: To appear in the proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    The Evolution of Internal Representation

    Get PDF
    To develop an appropriate internal representation, a deterministic learning algorithm that has an ability to adjust not only weights but also the number of adopted hidden nodes is proposed. The key mechanisms are (1) the recruiting mechanism that recruits proper extra hidden nodes, and (2) the reasoning mechanism that prunes potentially irrelevant hidden nodes. This learning algorithm can make use of external environmental clues to develop an internal representation appropriate for the required mapping. The encoding problem and the parity problem is used to demonstrate the performance of the proposed algorithm. The experimental results are clearly positive

    PreFallKD: Pre-Impact Fall Detection via CNN-ViT Knowledge Distillation

    Full text link
    Fall accidents are critical issues in an aging and aged society. Recently, many researchers developed pre-impact fall detection systems using deep learning to support wearable-based fall protection systems for preventing severe injuries. However, most works only employed simple neural network models instead of complex models considering the usability in resource-constrained mobile devices and strict latency requirements. In this work, we propose a novel pre-impact fall detection via CNN-ViT knowledge distillation, namely PreFallKD, to strike a balance between detection performance and computational complexity. The proposed PreFallKD transfers the detection knowledge from the pre-trained teacher model (vision transformer) to the student model (lightweight convolutional neural networks). Additionally, we apply data augmentation techniques to tackle issues of data imbalance. We conduct the experiment on the KFall public dataset and compare PreFallKD with other state-of-the-art models. The experiment results show that PreFallKD could boost the student model during the testing phase and achieves reliable F1-score (92.66%) and lead time (551.3 ms)
    • …
    corecore