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Abstract 
To develop an appropriate internal representation, a 

deterministic learning algorithm that has an ability to 
adjust not only weights but also the number of adopted 
hidden nodes is proposed.  The key mechanisms are (1) 
the recruiting mechanism that recruits proper extra hidden 
nodes, and (2) the reasoning mechanism that prunes 
potentially irrelevant hidden nodes.  This learning 
algorithm can make use of external environmental clues 
to develop an internal representation appropriate for the 
required mapping.  The encoding problem and the parity 
problem is used to demonstrate the performance of the 
proposed algorithm.  The experimental results are clearly 
positive. 

Keywords: internal representation, Generalized Delta 
Rule, recruiting mechanism, pruning mechanism. 
 
1. Introduction 

In modern finance, derivatives such as futures and 
options play increasingly prominent roles in risk 
management and price speculative activities.  Owing to 
the high-leverage characteristic involved in derivative 
trading, investors can gain enormous profits with a small 
amount of capital if they can accurately predict the 
market’s direction.  Financial markets, however, can be 
influenced by many factors, such as, political events, 
general economic conditions, and traders’ expectations.  
Predicting the financial market’s movements is 
considered to be rather difficult in general.  Movements 
in market prices are not random.  Rather, they behave in a 
highly nonlinear, dynamic manner.  The standard random 
walk assumption of futures prices may merely be a veil of 
randomness that shrouds a messy nonlinear process (see, 
for example, [2][4][7]).  To make the forecasting of 
futures prices more reliable, the application of Artificial 
Neural Networks (ANN), especially the multi-layered 
feed-forward network [10], have received extensive 
attention[7][8][15]. 

Instead of directly deriving the nonlinear equation, 
these ANN tries to develop an appropriate internal 
representation for such forecasting problem.  In general, a 
nonlinear forecasting problem is like a problem of finding 
a nonlinear equation to capture the general pattern of a 
relationship between the independent variables xj’s and 
the dependent variables yl’s.  The form of the equation is 
yl = Fl(x), where x is the vector of independent variables 
xj and Fl is a nonlinear function derived from a given data 
set of samples {(1x, 1tl), …, (Nx, Ntl)} with ctl being the 

observed value of yl corresponding to cx.  In the context 
of multi-layered feed-forward network, as shown in 
Figure 1, the information x coming to the input nodes is 
recoded into an internal representation h ≡ (h1, h2, …, 
hp)t and the output Ol, the estimated value of  yl, is 
generated by the internal representation h rather than by 
the original pattern x.  “Input patterns can always be 
encoded, if there are enough hidden units, in a form so 
that the appropriate output pattern can be generated from 
any input pattern,” as mentioned in [10].  
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Figure 1.   An ANN with a layer of hidden nodes. 
 

Let’s take the multi-layered feed-forward network 
with the hyperbolic tangent (tanh) function [14][10], 

where tanh(x) ≡  
ee
ee

x-x

-xx

+
−

, used in all output and 

hidden nodes as the illustration.  Given the cth stimulus cx, 
the activation value of the ith hidden node h(cx, 2wi) and 
the activation values of the lth output node O(cx, 3wl, 2w) 
are as follows: 

h(cx, 2wi)  ≡ tanh(2wi0 +  
m

1j=
∑ 2wij cxj)  (1) 

O(cx, 3wl, 2w)  ≡ tanh(3wl0 + 
p

1i=
∑ 3wli h(cx, 2wi))  

= tanh(3wl0 + 
p

1i=
∑ 3wli tanh(2wi0 +  

m

1j=
∑ 2wij cxj)) (2) 

where m, p and q are the numbers of input, hidden and 
output nodes, respectively; 2wi0 is the bias of the ith hidden 
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node, 2wij is the weight of connection between the jth 
input node and the ith hidden node, 3wl0 is the bias of the 
lth output node, and 3wli is the weight of the connection 
between ith hidden nodes and the lth output node.  Denote 
the bold character a vector and the superscript t indicates 
the transposition: 2wi

t
 ≡ (2wi0, 2wi1, …, 2wim), 2wt

 ≡ (2w1
t, 

2w2
t, …, 2wp

t), 3wl
t ≡ (3wl0, 3wl1, …, 3wlp), 3wt ≡ (3w1

t, 
3w2

t, …, 3wq
t), and wt≡(2wt, 3wt).  

Given a set of training samples {(1x, 1t), …, (Nx, Nt)}, 
the learning goal is to seek a (w, p) that renders |O(cx, 3wl, 
2w) - ctl| < ε for all c ∈ {1, …, N} and all l, where ε is a 
given acceptable tolerance, says 10-6.  In general, the 
learning can be recognized as a minimization of the sum 
of residual squares E(w, p) via setting as 

q

1l

N

1cp,p,
minp),E(min

==
∑∑≡

ww
w (O(cx, 3wl, 2w) - ctl)2  (3) 

This is a complicated unconstrained nonlinear 
programming problem. 

The process of an optimization algorithm applied to 
problem (3) is similar to the process of searching along 
the surface defined by the sum of residual squares in the 
{w, p} space composed of all possible (w, p).  Instead of 
desperately obtaining the globally optimal solution (w*, 
p*) in a complicated nonlinear environment, many 
research are motivated to develop a reasonable algorithm 
for searching an acceptable learning solution (w, p) that 
renders |O(cx, 3wl, 2w) - ctl| < ε for all c ∈ {1, …, N} and 
all l. 

Developing such algorithm is not easy due to 
managing with the following characteristics: (1) the {w, p} 
space is unbounded since the number of possible (w, p) is 
infinite; (2) the surface defined by values of E(w, p) over 
the {w, p} space is non-differentiable since, for example, 
changes in the value of p is discrete and can have 
discontinuous effects on the value of E(w, p); (3) the 
surface is non-analyzable since the mapping from (w, p) 
to the value of E(w, p) is not yet analyzable; (4) the 
surface is complex and deceptive since values of E(w, p) 
with similar (w, p) may be dramatically different, and 
with quite different (w, p) may be very similar.  These 
characteristics lead to hardly having any solid theoretical 
support in developing a reasonable learning algorithm. 

In the context of internal representation, equations (1) 
and (2) state that (1) the vector of activation values of all 
hidden nodes h(x, 2w) ≡ (h(x, 2w1), …, h(x, 2wp))t is the 
internal representation of the input pattern x, and (2) the 
activation values of all output nodes are calculated based 
on this internal representation, i.e., O(cx, 3wl, 2w)  ≡ 
O(h(cx, 2w), 3wl) for all l.  The activation functions 
adopted on all hidden nodes are predefined and fixed; 
usually, they are semi-linear [10].  Thus the internal 
presentation evolves when the values of p and 2w are 
altered. 

The internal representation is a level-adjacent 
mapping from the {x} space to the {h} space.  Level-
adjacent mapping means that level-adjacent points in the 
previous-layer space are mapped to neighboring points in 
the latter-layer space [14].  While the nearness of two 
points in the latter-layer space is measures with their 

(direct) distance, the level-adjacency between two points 
in the previous-layer space is measured with the 
difference of their associated activation level.  Owing to 
the linear characteristic of computing the net input value 
and the semi-linear characteristic of the activation 
function adopted in equations (1) and (2), there are level-
adjacent mapping from the input layer {x} space to the 
hidden layer {h} space, and from the hidden layer {h} 
space to the output layer {O} space. 

In the learning stage, the position of the training 
stimuli {1x, …, Nx} in the {x} space are given and fixed; 
however, {h(1x, 2w), …, h(Nx, 2w)} are determined by p 
and 2w, and each O(cx, 3wl, 2w) is determined with h(cx, 
2w) and 3wl.  As stated in [14], (1) no matter what kind of 
learning algorithm is used, the resulting mapping between 
two consecutive layers is always a level-adjacent 
mapping; (2) the crux of learning is to adjust p and 2w to 
render the internal representation appropriate for the 
learning task.  An internal representation is appropriate 
for the task if there is a 3w such that |O(h(cx, 2w), 3wl) - ctl| 
< ε for all c ∈ {1, …, N} and all l.  Although the learning 
of ANN should derive appropriate p and 2w from the 
training samples to obtain an appropriate internal 
representation, the development of the internal 
representation is relevant with the current value of p and 
w, not the current value of p and 2w. 

In literatures, there are two categories of learning 
algorithms for multi-layered feed-forward network: the 
evolutionary ANN (EANN) algorithms, which are 
stochastic, and the weight-and-structure-change learning 
algorithms, which are deterministic. 

Over past years, researchers have applied evolutionary 
computation to problems whose solution space is so large 
and highly complex that it is difficult to employ 
conventional optimization procedures to search for a 
global optimum.  Evolutionary computation refers to a 
collection of stochastic searching algorithms whose 
designs are based upon the ideas of genetic inheritance 
and the Darwinian principle of the survival of the fittest 
(natural selection).  There are several different styles of 
evolutionary algorithms: evolutionary strategies (ES), 
evolutionary programming (EP), genetic algorithms (GA), 
and genetic programming (GP).  All of them model the 
searching process over the solution space by mimicking a 
biological evolution process.  They differ mainly in the 
evolution operators involved and the representation of the 
solution space.  Most researchers believe that, basically, 
evolutionary computation should not be considered as a 
kind of optimization technique to compete with other 
alternative techniques, but an optimization principle to be 
incorporated into existing techniques.  Thus, they propose 
to apply EP, GA and GP to the determination of the 
network structure of an ANN.  This gives rise to three 
classes of ANN, EPNN, GANN, and GPNN.  All of these 
classes are portions of EANN.  The most promising 
EANNs involve a global search algorithm that is 
stochastic [17]. 

In contrast, all weight-and-structure-change learning 
algorithms alter w and p in a deterministic way; for 
example, the tiling algorithm [9], the cascade-correlation 

 



(CC) algorithm [5], the upstart algorithm [6], the W&S 
algorithm [16], the CTN algorithm [3], and the softening 
algorithm [12][13][14].  Without following the ideas of 
genetic inheritance and natural selection, they adjust the 
network structure in one of the following ways: 

(1) Destructively: using excess hidden nodes initially 
and pruning (removing) least effective hidden nodes 
during the learning process; e.g., W&S algorithm and 
CTN algorithm; 

(2) Constructively: using less hidden nodes initially 
and recruiting (adding) more hidden nodes during the 
learning process; e.g., the tiling algorithm, CC algorithm, 
and the upstart algorithm; 

(3) Aggregately: using only one hidden node initially, 
and recruiting as well as pruning hidden nodes during the 
learning process; e.g., the softening algorithm. 

These deterministic learning algorithms have an 
ability to develop an appropriate internal representation 
via recruiting/pruning hidden nodes and altering the 
weights during the learning process. 

Here we introduce a deterministic learning algorithm 
that makes use of sequentially presented training samples 
to adjust the values of w and p to develop an internal 
representation appropriate for the required mapping.  
More over, this learning algorithm guarantees an 
acceptable learning result, without the binary output 
restriction.  Recall that a learning result is acceptable if 
|O(cx, 3wl, 2w) - ctl| < ε for all c ∈ {1, …, N} and all l, 
where ε is a given acceptable tolerance. 

This paper is organized as follows.  The proposed 
learning algorithm and its theoretical justification are 
introduced in Section 2.  Empirical justification of the 
proposed algorithm is given in Section 3.  The encoding 
problem and the parity problem [11] will be used to 
demonstrate the performance of the proposed algorithm.  
Finally, conclusions and future work are presented in 
Section 4.  For the simplicity of presentation, all 
theoretical proofs are given in the Appendix. 
 
2. The Proposed Learning Algorithm 

To simplify the presentation, without lose of the 
generality, we let q = 1 in the explanation of our design.  
Table 1 presents the general procedure and Figure 2 
displays the flow chart of the proposed algorithm.  The 
key mechanisms are (1) the recruiting mechanism that 
effectively recruits proper extra hidden nodes, and (2) the 
reasoning mechanism that effectively prunes potentially 
irrelevant hidden nodes.   The details of the proposed 
algorithm at each step are given below. 

The pairs of (cx, ct) are presented sequentially.  At the 
kth stage, the stage when the kth sample (kx, kt) enters, the 
goal is to seek the values of (w, p) so that 

|O(cx, w) - ct| < ε for all c ∈ I(k) ≡ {1, …, k} (4) 
The learning proceeds via evolving the internal 

representation to render it appropriate for accomplishing 
the goal (4).  The internal representation that can 
accomplish the goal (4) is an appropriate one. 
 
 

Table 1.   The proposed deterministic algorithm. 
Step 0: Set one hidden node with weights assigned 
randomly; set k = 1. 
Step 1: If it is the end of the sample input sequence, STOP
Step 2: Present the kth given sample (kx, kt). 
Step 3: If |O(kx, w) - kt| > ε, then 

Step 3.1: Store the weights. 
Step 3.2: Apply the weight-tuning mechanism to adjust 

weights until one of the following cases occurs:
(1)If |O(cx, w) - ct| < ε ∀ c ∈ I(k), then go to Step 4. 
(2)If an unacceptable result is obtained, then 

(a) set λ=1. 
(b) Restore the weights. 
(c) p+2 p and recruit two extra hidden nodes with 

2wp-1
t = (ζ-λαt 

kx, λαt), 2wp
t = (ζ+λαt 

kx, -λαt), ζ = 
10-6 

1)I(kc
min

−∈
2-p

1i=
∑

 |αt(kx - cx)|, 3wp-1 = 3wp = (tanh-1(kt) -

3w0 - 3wi h(kx, 2wi))/2tanh(ζ), where α is a unit 

vector that αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1). 
(d) Apply the weight-tuning mechanism to adjust 

weights until one of the following cases occurs: 
(i) If |O(cx, w) - ct| < ε ∀ c ∈ I(k), then go to Step 4.
(ii) If an unacceptable result is obtained, let λ*2 
λ and p-2  p, then go to (b). 

Step 4: Prune all potentially irrelevant hidden nodes. 
Step 5: k+1  k; go to Step 1. 
 

The end of
sample input
sequence ?

Restore the weights

Yes

Yes

No

Learning beginning with
one hdden node and k=1

STOP

Present the kth
sample

?εt),(Oif kk >−wx

Store the weights.

No Prune potentially
irrelevant hidden
nodes.

 k+1 -> k

Applying the weight-
tuning mechanism.

λ=1

A

B

Recruit  two extra
hidden nodes

Applying the weight-
tuning mechanism.

λ* 2 -> λ;
p - 2  -> p

A

B

Figure 2.   The flow chart of the proposed learning 
algorithm. 
 

Note that, obtaining an appropriate internal 
representation is a necessary condition, but not a 
sufficient condition, of accomplishing the goal (4).  

 



However, the effort of checking regularly if the current 
internal representation is appropriate is huge.  
Furthermore, it is useless when the current network 
structure is a defective one, i.e., the number of adopted 
hidden nodes is less than the necessary number of hidden 
nodes for accomplishing the goal (4).  These arguments 
account for the reason of adopting accomplishing the goal 
(4), instead of obtaining an appropriate internal 
representation, as the stopping criterion. 

The algorithm ensures that goal (4) is accomplished at 
the end of each stage.  Consequently, it guarantees an 
acceptable learning result at the end. 
Specifically, when the kth sample (kx, kt) enters, we first 
check if the goal (4) is accomplished.  If so, the current 
internal representation is appropriate and there is only a 
reasoning effort involved.  Then the next given sample is 
presented.  If not, in our next step (Step 3), the weight-
tuning mechanism implementing the momentum version 
of the generalized delta rule [10] with automatic 
adjustment of learning rate [13] is applied to min  E

w
k(w) 

to adjust weights, where Ek(w) ≡ (tanh(
I(k)c∈
∑ 3w0 + 

p

1i=
∑ 3wi 

tanh(2wi0 + ∑  
m

1j=
2wij cxj)) - ct)2.  Namely, the objective 

function used in the optimization process at the kth stage 
Ek(w) is now defined as the current sum of residual 
squares and the parameter p remains the same.  Such a 
weight-tuning mechanism attempts to achieve the goal (4).  

(Rumelhart, Hinton & Williams, 1986a) has claimed 
that a mechanism that implements the generalized delta 
rule can “learn internal representations by error 
propagation.” Unfortunately, this weight-tuning 
mechanism has the power to alter the weights, yet no 
power to add/delete hidden nodes.  More over, this 
mechanism may converge to the neighborhood of an 
undesired attractor of min  E

w
k(w) in which ▽w Ek(w) = 0; 

for example, a relatively optimal solution or a saddle 
point solution.  Another possible failure is the case that 
the current network structure is a defective one.  All of 
the above lead to an unacceptable result.  These were 
indicated in Figure 3: Path B indicates the situation when 
the result of implementing the weight-tuning mechanism 
is an unacceptable one; while Path A indicates the 
situation when the result is an acceptable one. 

A perfect weight-tuning mechanism that can avoid the 
predicament of converging to an undesired attractor is 
desirable, because the defective network structure will be 
the only cause of obtaining an unacceptable result.  
Unfortunately, there is no such perfect weight-tuning 
mechanism currently.  Under this confinement, together 
with the consideration of the computing complexity, the 
current weight-tuning mechanism is adopted.  The 
consideration of the computing complexity is very 
important because the weight-tuning mechanism will be 
triggered very frequently during the learning process. 

Calculate
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Figure 3.   The flow chart of the weight-tuning 
mechanism implementing the momentum version of 
the generalized delta rule with automatic adjustment 
of learning rate.  ε’ and ε’’ are given tiny numbers. 
 

Recruiting extra hidden nodes is adopted to handle 
these problems in Path B of Figure 3 as follows.  Action 
(b) in Step 3.2 restores the weights stored in Step 3.1.  
Assume the goal of the previous stage is accomplished at 
the end of the previous stage.  Then, by restoring the 
weights stored in Step 3.1, we return to the internal 
representation that renders |O(cx, w) - ct| < ε for all c ∈ 
I(k-1) and |O(kx, w) - kt| ≧ ε.  For Action (c) in Step 3.2, 
there is a recruiting mechanism arranged to recruit two 
extra hidden nodes with a gain parameter λ whose value 
is initially 1 set via Action (a) in Step 3.2.  These two 
new-added hidden nodes, the p-1th and pth ones, have 
weights 2wp-1

t = (ζ-λαt 
kx, λαt), 2wp

t = (ζ+λαt 
kx, -λαt), ζ = 

10-6 

1)I(kc
min

−∈
 |αt(kx - cx)|, 3wp-1 = 3wp = (tanh-1(kt) - 3w0 - 

2-p

1i=
∑ 3wi h(kx, 2wi))/2tanh(ζ), where α is a unit vector that 

αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1).  For Action (d) in Step 3.2, 
the λ value is fixed and the weight-tuning mechanism is 
applied to render the goal (4) accomplished.  If an 
unacceptable result is obtained, we multiply the λ value 
by 2, and repeat Actions (b), (c), and (d).  The Actions (b), 
(c), and (d) are repeated until the goal (4) is accomplished.  

 



The arrangement of Actions (b), (c) and (d) is capable 
of solving (1) the defectiveness of the network structure 
via adding two hidden nodes, and (2) the predicament of 
converging to an undesired attractor via introducing extra 
dimensions in the weight space such that the trapped 
attractor could be no longer an attractor in the new weight 
space. 

Recruiting two extra hidden nodes has introduced two 
extra dimensions in the {h} space, thus has introduced 
two extra dimensions in the internal representation.  The 
arrangement of 2wp-1 and 2wp has made the new 
corresponding point h(kx, 2w) placed at the positive side 
of each of these two new-added dimensions, and all other 
new corresponding points h(cx, 2w)’s placed at the 
positive side of one new-added dimension and at the 
negative side of the other new-added dimension.  A large 
λ value renders the behavior of the activation functions of 
the newly recruited p-1th and pth hidden nodes similar to 
the behavior of a threshold function, and results in a 
phenomenon that h(cx, 2wp-1) and h(cx, 2wp) numerically 
equal 1 or –1 for almost all c ∈ I(k-1).  Thus, as stated in 
Lemma 1, the arrangement of such two new-added hidden 
nodes with a large λ value has made the new 
corresponding point h(kx, 2w) placed near the tanh(ζ) 
position of each of these two new-added dimensions, and 
all other new corresponding points h(cx, 2w)’s placed near 
the –1 corner of one new-added dimension and near the 
+1 corner of the other new-added dimension.  Therefore, 
as stated in Lemma 2, if the internal representation is 
appropriate to render |O(cx, w) - ct| < ε for all c ∈ I(k-1) 
and |O(kx, w) - kt| ≧ ε, after recruiting such two hidden 
nodes, the new internal representation can be appropriate 
for all k training samples.  In other words, the 
arrangement of such two new-added hidden nodes with a 
large λ value is capable of solving the defectiveness of 
the network structure via adding two hidden nodes. 

It is difficult to identify the scenario (the sample input 
sequence and the value of λ) for which the weight-tuning 
mechanism will (or will not) achieve the goal (4), because 
the surface defined by Ek(w) over the weight space is not 
possible to analyze.  However, Lemma 2 shows that the 
goal (4) can be accomplished immediately via recruiting 
merely two extra hidden nodes with proper weights and λ.  
More over, Lemma 2 shows that there is no infinite loop 
in Step 3.2.  In other words, the arrangement of Actions 
(b), (c) and (d) is capable of solving the predicament of 
converging to an undesired attractor via introducing extra 
dimensions in the weight space such that the trapped 
attractor could be no longer an attractor in the new weight 
space. 

Therefore, Step 3.2 does ensure that the goal of each 
stage is accomplished at the end of each stage, thus 
guaranteeing an acceptable learning result obtained at the 
end. 

The recruiting mechanism handles the situation of 
encountering an unacceptable result without involving the 
reason.  A defective network structure triggers the 
recruiting mechanism; the situation of converging to an 
undesired attractor also triggers the recruiting mechanism.  
The recruiting mechanism triggered due to the situation 

of converging to an undesired attractor may recruit excess 
hidden nodes that later become irrelevant.  At each stage, 
a hidden node is irrelevant if the goal (4) is still 
accomplished with this hidden node being deleted.  The 
irrelevant hidden nodes are useless with respect to the 
goal (4); furthermore, they may contribute significant 
effort to the performance of network and result in bad 
generalization ability.  More over, more samples typically 
lead to more concise information about the appropriate 
internal representation, and thus fewer hidden nodes are 
required.  It is therefore necessary to prune irrelevant 
hidden nodes, and an internal representation is better if it 
accomplishes the goal (4) with smaller amount of adopted 
hidden nodes.   

In Step 4, a reasoning mechanism is arranged to prune 
all potentially irrelevant hidden nodes.  At the kth stage, a 
hidden node is potentially irrelevant if it is deleted and 
the goal (4) can be accomplished via applying the weight-
tuning mechanism.  In Step 4, every hidden node is 
checked whether it is potentially irrelevant.  Each 
potentially irrelevant hidden node is deleted after being 
identified. 
 
3. The Performance and Analysis of the 
Proposed Algorithm 

Here we use two popular examples to examine how 
the current arrangement for the recruiting and reasoning 
mechanisms works: the encoding problem [1][11] and the 
parity problem [11].  

[1] has posed the encoding problem where a set of N 
orthogonal input patterns are mapped to a set of N 
orthogonal output patterns through a small set of hidden 
nodes.  Such problem requires a rather efficient way in 
encoding an N bit pattern into a small set of hidden nodes 
and then decoding this (internal) representation into the 
output pattern.  [11] has proposed that a set of N 
orthogonal input patterns are mapped to a set of N 
orthogonal output patterns through a small set of log2 N 
hidden nodes.  The reason behind such design is that if 
the hidden nodes take on binary values, the hidden nodes 
must form a binary number to encode each of the input 
patterns.  They present an encoding problem with an 8 
input patterns, 8 output patterns, and 3 hidden nodes, and, 
as shown in Table 2, they find the learning system 
develop solutions that use the intermediate values. 
 
Table 2.   The mapping of the encoding problem 
generated in [11]. 

Input 
Patterns 

Hidden Node 
Patterns 

 Output 
Patterns 

1 0 0 0 0 0 0 0 0.5     0       0  1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0        0       0.5  0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0.5     0       1  0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1        0       0.5  0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1        1       1  0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0        1       0  0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1        1       0  0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0        1       1  0 0 0 0 0 0 0 1

 

 



Table 3.   The mapping of the encoding problem 
generated by the proposed algorithm. 

Input 
Patterns 

 Hidden Node 
Patterns 

 Output 
Patterns 

1 0 0 0 0 0 0 0  0.1452       -0.9939  1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0  -0.1451       0.9926  0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0  0.8070       -0.5973  0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0  -0.8416       0.6074  0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0   0.9931        0.1794  0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0  -0.9920      -0.2055  0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0  0.6247         0.8334  0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1  -0.6150      -0.8390  0 0 0 0 0 0 0 1

 
Our simulation result is encouraging: the proposed 

algorithm employs the ability of the intermediate values 
in a more efficient way.  Table 3 shows the mapping of 
the encoding problem generated by the proposed 
algorithm.  The proposed algorithm also uses 
intermediate values to result in an appropriate internal 
representation.  The appropriate internal representations 
shown in Table 2 and Table 3 are similar, except that the 
former uses three hidden nodes and the latter uses two 
hidden nodes.  It seems that the reasoning mechanism 
effectively prunes a potentially irrelevant hidden node, 
which is likely to be the middle one in Table 2. 
 

Table 4.   The mapping of the 4-bit parity problem 
generated in [11] and by the proposed algorithm. 

Input 
Patterns 

Hidden 
Node 

Patterns 
generated 

in  [11] 

Hidden Node 
Patterns generated 

by the proposed 
algorithm 

Output 
Patterns

0 0 0 0   1 1 1 1  0.8934    -0.9999    -0.9998 0 
1 0 0 0   1 0 1 1  0.5254    -0.9371    -0.9972 1 
0 1 0 0   1 0 1 1  0.5252    -0.9369    -0.9972 1 
0 0 1 0   1 0 1 1  0.5252    -0.9367    -0.9972 1 
0 0 0 1   1 0 1 1  0.5251    -0.9366    -0.9972 1 
1 1 0 0   1 0 1 0  -0.2646    0.9338    -0.9630 0 
1 0 1 0   1 0 1 0  -0.2647    0.9340    -0.9630 0 
1 0 0 1   1 0 1 0  -0.2648    0.9341    -0.9630 0 
0 1 1 0   1 0 1 0  -0.2649    0.9343    -0.9630 0 
0 1 0 1   1 0 1 0  -0.2650    0.9344    -0.9630 0 
0 0 1 1   1 0 1 0  -0.2651    0.9345    -0.9630 0 
1 1 1 0   0 0 1 0  -0.8097    0.9999    -0.5882 1 
1 1 0 1   0 0 1 0  -0.8097    0.9999    -0.5881 1 
1 0 1 1   0 0 1 0  -0.8097    0.9999    -0.5881 1 
0 1 1 1   0 0 1 0  -0.8098    0.9999    -0.5879 1 
1 1 1 1   0 0 0 0  -0.9626    1.0000    0.5627 0 

 
Table 4 shows the mapping of the 4-bit parity problem 

generated in [11] and by the proposed algorithm. [11] has 
proposed m hidden nodes required for the m-bit parity 
problem, and noted that “the internal representation 
created by the learning rule is to arrange that the number 
of hidden units that come on is equal to the number of 
zeros in the input and that the particular hidden units that 
come on depend only on the number, not on which input 
units are on.”  By contrast, as shown in Table 4, the 

appropriate internal representations developed in [11] and 
by the proposed algorithm are similar, except that the 
former uses four hidden nodes and the latter uses three 
hidden nodes.  The appropriate internal representations 
developed by the proposed algorithm is to arrange that 
these three hidden nodes also activates also via through 
detecting the number of zeros in the input, not on which 
input units are on. 

Table 5 shows the summary of the simulation results 
of m-bit parity problem, with the value of m from 2 to 6.  
For each value of m, there are 100 cases, each with a 
different randomly-generated input sequence.  As shown 
in Table 5, the average final number of adopted hidden 
nodes for the m-bit parity problems is smaller than m and 
the final number of adopted hidden nodes is less than m 
in most cases. 
 
Table 5.  The minimum, maximum, mean and 
standard deviation of number of adopted hidden 
nodes for the m-bit parity problem, with the value of 
m from 2 to 6.  For each value of m, there are 100 
cases, each with a different randomly-generated input 
sequence.   

m 2 3 4 5 6 
Minimum 2 2 3 3 4 

Mean 2 2.28 3.38 3.47 5.65
Maximum 2 4 5 5 17 
Standard 
Deviation 0 0.5924 0.5464 0.6428 2.3154

 
In summary, it seems that the current arrangement of 

the recruiting and reasoning mechanisms in the proposed 
algorithm works well that the internal representations 
evolves in a better way than the one developed by the 
generalized delta rule.  Recall that an appropriate internal 
representation with smaller amount of adopted hidden 
nodes is better. 
 
4. Discussions and Future Work 

In this paper, a deterministic learning algorithm that 
guarantees an acceptable learning result is proposed.  The 
proposed algorithm does not follow the ideas of genetic 
inheritance and natural selection.  During the process of 
the proposed algorithm, the internal representation 
evolves in a deterministic way to an appropriate one.  The 
key mechanisms of the proposed algorithm are (1) the 
recruiting mechanism that can recruit proper extra hidden 
nodes, and (2) the reasoning mechanism that can prune 
potentially irrelevant hidden nodes.  We provide 
theoretical justification to explain why the proposed 
algorithm guarantees an acceptable learning result. 

The experimental results show that the proposed 
algorithm also employs a similar ability of developing the 
internal representation with the one shown in [11].  This 
is not surprised since the proposed algorithm also adopts 
in its weight-tuning mechanism the generalized delta rule 
proposed in [10].  However, the experimental results 
show that the current arrangement of the recruiting and 
reasoning mechanisms in the proposed algorithm works 

 



well that the internal representations evolves in a better 
way than the internal representation developed by the 
generalized delta rule. 

There is a criticism when we apply the ANN to 
practical problems: a black box obtained from the 
learning.  A further study is to explore the appropriate 
internal representation obtained from the learning to 
provide the knowledge behind the application and to get 
rid of that criticism. 

The simulation results show that the number of 
adopted hidden nodes is a function of the sample input 
sequence.  As expected, some sample input sequences 
cause difficulties in the associated processes, due to 
encountering a defective network structure or the 
predicament of converging to an undesired attractor.  A 
further investigation (theoretically or numerically) on the 
surface defined by Ek(w) over the weight space is 
currently under study to identify the scenario (the sample 
input sequence and the value of λ) for which the weight-
tuning mechanism will (or will not) achieve the goal (4).   
Another study involves exploring (1) a better recruiting 
mechanism to recruit hidden nodes and (2) a better 
reasoning mechanism to prune potentially irrelevant 
hidden nodes in a much more efficient way. 
 
5. Appendix:  Theoretical Supports and their 
Proofs. 
Lemma 1: Let {cx| ∀ c ∈ I(k)} be given, and assume 2wp-

1
t = (ζ-λαt 

kx, λαt), 2wp
t = (ζ+λαt 

kx, -λαt), where λ is a 
given large number.  Then, there exists a unit vector α 
and a tiny positive number ζ that render h(cx, 2wp-1) + h(cx, 
2wp) ≅ 0.0 (Hereafter, F(x) ≅ y means that, numerically, 
the value of F(x) is y.) ∀ c ∈ I(k-1) and h(kx, 2wp-1) + h(kx, 
2wp) = 2tanh(ζ). 
 
Proof:  
 
∵ 2wp-1

t = (ζ - λαt 
kx, λαt),  

∴ 2wp-10 +  
m

1j=
∑ 2wp-1j cxj = ζ + λ(αt

 cx - αt
 kx).   

Similarly, 2wp0 +  
m

1j=
∑ 2wpj cxj = ζ + λ(αt

 kx - αt
 cx).   

∵ { cx| ∀ c ∈ I(k)} is given,  
∴ kx - cx is known for every c ∈ I(k-1). 
 

With a reasonable assumption that the amount of 
samples is finite, i.e., I(k) is a finite set, there exists a unit 
vector α that αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1).  Then, ζ is 
assigned as 10-6

1)I(kc
min

−∈
|αt(kx - cx)|. 

Since λ is a large value and ζ = 10-6

1)I(kc
min

−∈
|αt(kx - cx)|, 

h(cx, 2wp-1) = tanh(ζ + λ(αt
 cx - αt

 kx)) ≅ tanh(λ(αt
 cx - αt

 

kx)) and h(cx, 2wp) = tanh(ζ + λ(αt
 kx - αt

 cx)) ≅ -tanh(λ(αt
 

cx - αt
 kx)).  Thus, h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀c∈ I(k-

1).   
∵ h(kx, 2wp-1) = h(kx, 2wp) = tanh(ζ),  

∴ h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ).  
 
Q.E.D. 

Lemma 2:  Assume O(cx, w) = tanh(3w0 + ∑
2-p

1i=
3wi h(cx, 

2wi)), |O(cx, w) - ct| < ε ∀ c ∈ I(k-1), and |O(kx, w) – kt| ≧ 
ε.  With recruiting two hidden nodes, h(cx, 2wp-1) ≡ 

tanh(2wp-10 + ∑  
m

1j=
2wp-1j cxj) and h(cx, 2wp) ≡ tanh(2wp0 + 

 
m

1j=
∑

2-p

1i=
∑

2wpj cxj), the new value of O(cx, w) equals tanh(3w0 + 

3wi h(cx, 2wi) + 3wp-1 h(cx, 2wp-1) + 3wp h(cx, 2wp)).  

Then, there exist 2wp-1, 2wp, 3wp-1 and 3wp that render the 
new value of |O(cx, w) - ct| < ε ∀ c ∈ I(k). 
 
Proof:  
 

Let cy’ and cy be the values of O(cx, w) before and 
after introducing two hidden nodes, respectively.  Also let 

cnet be the value of 3w0 + 
2-p

1i=
∑ 3wi h(cx, 2wi) before 

introducing two hidden nodes.  Thus, cy’ = tanh(cnet) and 
cy = tanh(cnet + 3wp-1 h(cx, 2wp-1) + 3wp h(cx, 2wp)).   
∵ |O(cx, w) - ct| < ε ∀ c ∈ I(k-1) and |O(kx, w) – kt| ≧ ε 
before introducing two hidden nodes,  
∴ |cy’ - ct| < ε ∀ c ∈ I(k-1) and |ky’ – kt| ≧ ε. 

Let λ, 2wp-1 and 2wp be assigned as in Lemma 1.  Thus, 
from Lemma 1, h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀ c ∈ I(k-1) 
and h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ).  Let 3wp-1 = 3wp = 
γ, where γ = (tanh-1(kt) - knet)/2tanh(ζ).  
∵ 3wp-1 = 3wp and h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀ c ∈ 
I(k-1),  
∴ cy ≅ cy’ ∀ c ∈ I(k-1).  
Therefore, |cy - ct| < ε  ∀ c ∈ I(k-1) since |cy’ - ct| < ε ∀ c 
∈ I(k-1).   
∵ h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ),  
∴ ky = tanh(knet + γ 2tanh(ζ)) = kt.  Thus |ky – kt| < ε. 
 
 Q.E.D. 
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