
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2002 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-10-2002

The Evolution of Internal Representation The Evolution of Internal Representation

Rua-Huan Tsaih

Wen-Chyan Ke

Chia-Yu Liu

Follow this and additional works at: https://aisel.aisnet.org/iceb2002

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2002 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2002
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2002?utm_source=aisel.aisnet.org%2Ficeb2002%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Evolution of Internal Representation

Ray Tsaih, Wen-Chyan Ke, Chia-Yu Liu
Department of Management Information Systems

National Chengchi University
Taipei, Taiwan

tsaih@mis.nccu.edu.tw

Abstract
To develop an appropriate internal representation, a

deterministic learning algorithm that has an ability to
adjust not only weights but also the number of adopted
hidden nodes is proposed. The key mechanisms are (1)
the recruiting mechanism that recruits proper extra hidden
nodes, and (2) the reasoning mechanism that prunes
potentially irrelevant hidden nodes. This learning
algorithm can make use of external environmental clues
to develop an internal representation appropriate for the
required mapping. The encoding problem and the parity
problem is used to demonstrate the performance of the
proposed algorithm. The experimental results are clearly
positive.

Keywords: internal representation, Generalized Delta
Rule, recruiting mechanism, pruning mechanism.

1. Introduction

In modern finance, derivatives such as futures and
options play increasingly prominent roles in risk
management and price speculative activities. Owing to
the high-leverage characteristic involved in derivative
trading, investors can gain enormous profits with a small
amount of capital if they can accurately predict the
market’s direction. Financial markets, however, can be
influenced by many factors, such as, political events,
general economic conditions, and traders’ expectations.
Predicting the financial market’s movements is
considered to be rather difficult in general. Movements
in market prices are not random. Rather, they behave in a
highly nonlinear, dynamic manner. The standard random
walk assumption of futures prices may merely be a veil of
randomness that shrouds a messy nonlinear process (see,
for example, [2][4][7]). To make the forecasting of
futures prices more reliable, the application of Artificial
Neural Networks (ANN), especially the multi-layered
feed-forward network [10], have received extensive
attention[7][8][15].

Instead of directly deriving the nonlinear equation,
these ANN tries to develop an appropriate internal
representation for such forecasting problem. In general, a
nonlinear forecasting problem is like a problem of finding
a nonlinear equation to capture the general pattern of a
relationship between the independent variables xj’s and
the dependent variables yl’s. The form of the equation is
yl = Fl(x), where x is the vector of independent variables
xj and Fl is a nonlinear function derived from a given data
set of samples {(1x, 1tl), …, (Nx, Ntl)} with ctl being the

observed value of yl corresponding to cx. In the context
of multi-layered feed-forward network, as shown in
Figure 1, the information x coming to the input nodes is
recoded into an internal representation h ≡ (h1, h2, …,
hp)t and the output Ol, the estimated value of yl, is
generated by the internal representation h rather than by
the original pattern x. “Input patterns can always be
encoded, if there are enough hidden units, in a form so
that the appropriate output pattern can be generated from
any input pattern,” as mentioned in [10].

O 1 O 2 O q

h 1 h 2 h p

X 1 X 2 X m

Output Patterns

Internal
Representation

Units

Input Patterns

Figure 1. An ANN with a layer of hidden nodes.

Let’s take the multi-layered feed-forward network
with the hyperbolic tangent (tanh) function [14][10],

where tanh(x) ≡
ee
ee

x-x

-xx

+
−

, used in all output and

hidden nodes as the illustration. Given the cth stimulus cx,
the activation value of the ith hidden node h(cx, 2wi) and
the activation values of the lth output node O(cx, 3wl, 2w)
are as follows:

h(cx, 2wi) ≡ tanh(2wi0 +
m

1j=
∑ 2wij cxj) (1)

O(cx, 3wl, 2w) ≡ tanh(3wl0 +
p

1i=
∑ 3wli h(cx, 2wi))

= tanh(3wl0 +
p

1i=
∑ 3wli tanh(2wi0 +

m

1j=
∑ 2wij cxj)) (2)

where m, p and q are the numbers of input, hidden and
output nodes, respectively; 2wi0 is the bias of the ith hidden

mailto:tsaih@mis.nccu.edu.tw
Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

Administrator

node, 2wij is the weight of connection between the jth
input node and the ith hidden node, 3wl0 is the bias of the
lth output node, and 3wli is the weight of the connection
between ith hidden nodes and the lth output node. Denote
the bold character a vector and the superscript t indicates
the transposition: 2wi

t
 ≡ (2wi0, 2wi1, …, 2wim), 2wt

 ≡ (2w1
t,

2w2
t, …, 2wp

t), 3wl
t ≡ (3wl0, 3wl1, …, 3wlp), 3wt ≡ (3w1

t,
3w2

t, …, 3wq
t), and wt≡(2wt, 3wt).

Given a set of training samples {(1x, 1t), …, (Nx, Nt)},
the learning goal is to seek a (w, p) that renders |O(cx, 3wl,
2w) - ctl| < ε for all c ∈ {1, …, N} and all l, where ε is a
given acceptable tolerance, says 10-6. In general, the
learning can be recognized as a minimization of the sum
of residual squares E(w, p) via setting as

q

1l

N

1cp,p,
minp),E(min

==
∑∑≡

ww
w (O(cx, 3wl, 2w) - ctl)2 (3)

This is a complicated unconstrained nonlinear
programming problem.

The process of an optimization algorithm applied to
problem (3) is similar to the process of searching along
the surface defined by the sum of residual squares in the
{w, p} space composed of all possible (w, p). Instead of
desperately obtaining the globally optimal solution (w*,
p*) in a complicated nonlinear environment, many
research are motivated to develop a reasonable algorithm
for searching an acceptable learning solution (w, p) that
renders |O(cx, 3wl, 2w) - ctl| < ε for all c ∈ {1, …, N} and
all l.

Developing such algorithm is not easy due to
managing with the following characteristics: (1) the {w, p}
space is unbounded since the number of possible (w, p) is
infinite; (2) the surface defined by values of E(w, p) over
the {w, p} space is non-differentiable since, for example,
changes in the value of p is discrete and can have
discontinuous effects on the value of E(w, p); (3) the
surface is non-analyzable since the mapping from (w, p)
to the value of E(w, p) is not yet analyzable; (4) the
surface is complex and deceptive since values of E(w, p)
with similar (w, p) may be dramatically different, and
with quite different (w, p) may be very similar. These
characteristics lead to hardly having any solid theoretical
support in developing a reasonable learning algorithm.

In the context of internal representation, equations (1)
and (2) state that (1) the vector of activation values of all
hidden nodes h(x, 2w) ≡ (h(x, 2w1), …, h(x, 2wp))t is the
internal representation of the input pattern x, and (2) the
activation values of all output nodes are calculated based
on this internal representation, i.e., O(cx, 3wl, 2w) ≡
O(h(cx, 2w), 3wl) for all l. The activation functions
adopted on all hidden nodes are predefined and fixed;
usually, they are semi-linear [10]. Thus the internal
presentation evolves when the values of p and 2w are
altered.

The internal representation is a level-adjacent
mapping from the {x} space to the {h} space. Level-
adjacent mapping means that level-adjacent points in the
previous-layer space are mapped to neighboring points in
the latter-layer space [14]. While the nearness of two
points in the latter-layer space is measures with their

(direct) distance, the level-adjacency between two points
in the previous-layer space is measured with the
difference of their associated activation level. Owing to
the linear characteristic of computing the net input value
and the semi-linear characteristic of the activation
function adopted in equations (1) and (2), there are level-
adjacent mapping from the input layer {x} space to the
hidden layer {h} space, and from the hidden layer {h}
space to the output layer {O} space.

In the learning stage, the position of the training
stimuli {1x, …, Nx} in the {x} space are given and fixed;
however, {h(1x, 2w), …, h(Nx, 2w)} are determined by p
and 2w, and each O(cx, 3wl, 2w) is determined with h(cx,
2w) and 3wl. As stated in [14], (1) no matter what kind of
learning algorithm is used, the resulting mapping between
two consecutive layers is always a level-adjacent
mapping; (2) the crux of learning is to adjust p and 2w to
render the internal representation appropriate for the
learning task. An internal representation is appropriate
for the task if there is a 3w such that |O(h(cx, 2w), 3wl) - ctl|
< ε for all c ∈ {1, …, N} and all l. Although the learning
of ANN should derive appropriate p and 2w from the
training samples to obtain an appropriate internal
representation, the development of the internal
representation is relevant with the current value of p and
w, not the current value of p and 2w.

In literatures, there are two categories of learning
algorithms for multi-layered feed-forward network: the
evolutionary ANN (EANN) algorithms, which are
stochastic, and the weight-and-structure-change learning
algorithms, which are deterministic.

Over past years, researchers have applied evolutionary
computation to problems whose solution space is so large
and highly complex that it is difficult to employ
conventional optimization procedures to search for a
global optimum. Evolutionary computation refers to a
collection of stochastic searching algorithms whose
designs are based upon the ideas of genetic inheritance
and the Darwinian principle of the survival of the fittest
(natural selection). There are several different styles of
evolutionary algorithms: evolutionary strategies (ES),
evolutionary programming (EP), genetic algorithms (GA),
and genetic programming (GP). All of them model the
searching process over the solution space by mimicking a
biological evolution process. They differ mainly in the
evolution operators involved and the representation of the
solution space. Most researchers believe that, basically,
evolutionary computation should not be considered as a
kind of optimization technique to compete with other
alternative techniques, but an optimization principle to be
incorporated into existing techniques. Thus, they propose
to apply EP, GA and GP to the determination of the
network structure of an ANN. This gives rise to three
classes of ANN, EPNN, GANN, and GPNN. All of these
classes are portions of EANN. The most promising
EANNs involve a global search algorithm that is
stochastic [17].

In contrast, all weight-and-structure-change learning
algorithms alter w and p in a deterministic way; for
example, the tiling algorithm [9], the cascade-correlation

(CC) algorithm [5], the upstart algorithm [6], the W&S
algorithm [16], the CTN algorithm [3], and the softening
algorithm [12][13][14]. Without following the ideas of
genetic inheritance and natural selection, they adjust the
network structure in one of the following ways:

(1) Destructively: using excess hidden nodes initially
and pruning (removing) least effective hidden nodes
during the learning process; e.g., W&S algorithm and
CTN algorithm;

(2) Constructively: using less hidden nodes initially
and recruiting (adding) more hidden nodes during the
learning process; e.g., the tiling algorithm, CC algorithm,
and the upstart algorithm;

(3) Aggregately: using only one hidden node initially,
and recruiting as well as pruning hidden nodes during the
learning process; e.g., the softening algorithm.

These deterministic learning algorithms have an
ability to develop an appropriate internal representation
via recruiting/pruning hidden nodes and altering the
weights during the learning process.

Here we introduce a deterministic learning algorithm
that makes use of sequentially presented training samples
to adjust the values of w and p to develop an internal
representation appropriate for the required mapping.
More over, this learning algorithm guarantees an
acceptable learning result, without the binary output
restriction. Recall that a learning result is acceptable if
|O(cx, 3wl, 2w) - ctl| < ε for all c ∈ {1, …, N} and all l,
where ε is a given acceptable tolerance.

This paper is organized as follows. The proposed
learning algorithm and its theoretical justification are
introduced in Section 2. Empirical justification of the
proposed algorithm is given in Section 3. The encoding
problem and the parity problem [11] will be used to
demonstrate the performance of the proposed algorithm.
Finally, conclusions and future work are presented in
Section 4. For the simplicity of presentation, all
theoretical proofs are given in the Appendix.

2. The Proposed Learning Algorithm

To simplify the presentation, without lose of the
generality, we let q = 1 in the explanation of our design.
Table 1 presents the general procedure and Figure 2
displays the flow chart of the proposed algorithm. The
key mechanisms are (1) the recruiting mechanism that
effectively recruits proper extra hidden nodes, and (2) the
reasoning mechanism that effectively prunes potentially
irrelevant hidden nodes. The details of the proposed
algorithm at each step are given below.

The pairs of (cx, ct) are presented sequentially. At the
kth stage, the stage when the kth sample (kx, kt) enters, the
goal is to seek the values of (w, p) so that

|O(cx, w) - ct| < ε for all c ∈ I(k) ≡ {1, …, k} (4)
The learning proceeds via evolving the internal

representation to render it appropriate for accomplishing
the goal (4). The internal representation that can
accomplish the goal (4) is an appropriate one.

Table 1. The proposed deterministic algorithm.
Step 0: Set one hidden node with weights assigned
randomly; set k = 1.
Step 1: If it is the end of the sample input sequence, STOP
Step 2: Present the kth given sample (kx, kt).
Step 3: If |O(kx, w) - kt| > ε, then

Step 3.1: Store the weights.
Step 3.2: Apply the weight-tuning mechanism to adjust

weights until one of the following cases occurs:
(1)If |O(cx, w) - ct| < ε ∀ c ∈ I(k), then go to Step 4.
(2)If an unacceptable result is obtained, then

(a) set λ=1.
(b) Restore the weights.
(c) p+2 p and recruit two extra hidden nodes with

2wp-1
t = (ζ-λαt

kx, λαt), 2wp
t = (ζ+λαt

kx, -λαt), ζ =
10-6

1)I(kc
min

−∈
2-p

1i=
∑

 |αt(kx - cx)|, 3wp-1 = 3wp = (tanh-1(kt) -

3w0 - 3wi h(kx, 2wi))/2tanh(ζ), where α is a unit

vector that αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1).
(d) Apply the weight-tuning mechanism to adjust

weights until one of the following cases occurs:
(i) If |O(cx, w) - ct| < ε ∀ c ∈ I(k), then go to Step 4.
(ii) If an unacceptable result is obtained, let λ*2
λ and p-2 p, then go to (b).

Step 4: Prune all potentially irrelevant hidden nodes.
Step 5: k+1 k; go to Step 1.

The end of
sample input
sequence ?

Restore the weights

Yes

Yes

No

Learning beginning with
one hdden node and k=1

STOP

Present the kth
sample

?εt),(Oif kk >−wx

Store the weights.

No Prune potentially
irrelevant hidden
nodes.

 k+1 -> k

Applying the weight-
tuning mechanism.

λ=1

A

B

Recruit two extra
hidden nodes

Applying the weight-
tuning mechanism.

λ* 2 -> λ;
p - 2 -> p

A

B

Figure 2. The flow chart of the proposed learning
algorithm.

Note that, obtaining an appropriate internal
representation is a necessary condition, but not a
sufficient condition, of accomplishing the goal (4).

However, the effort of checking regularly if the current
internal representation is appropriate is huge.
Furthermore, it is useless when the current network
structure is a defective one, i.e., the number of adopted
hidden nodes is less than the necessary number of hidden
nodes for accomplishing the goal (4). These arguments
account for the reason of adopting accomplishing the goal
(4), instead of obtaining an appropriate internal
representation, as the stopping criterion.

The algorithm ensures that goal (4) is accomplished at
the end of each stage. Consequently, it guarantees an
acceptable learning result at the end.
Specifically, when the kth sample (kx, kt) enters, we first
check if the goal (4) is accomplished. If so, the current
internal representation is appropriate and there is only a
reasoning effort involved. Then the next given sample is
presented. If not, in our next step (Step 3), the weight-
tuning mechanism implementing the momentum version
of the generalized delta rule [10] with automatic
adjustment of learning rate [13] is applied to min E

w
k(w)

to adjust weights, where Ek(w) ≡ (tanh(
I(k)c∈
∑ 3w0 +

p

1i=
∑ 3wi

tanh(2wi0 + ∑
m

1j=
2wij cxj)) - ct)2. Namely, the objective

function used in the optimization process at the kth stage
Ek(w) is now defined as the current sum of residual
squares and the parameter p remains the same. Such a
weight-tuning mechanism attempts to achieve the goal (4).

(Rumelhart, Hinton & Williams, 1986a) has claimed
that a mechanism that implements the generalized delta
rule can “learn internal representations by error
propagation.” Unfortunately, this weight-tuning
mechanism has the power to alter the weights, yet no
power to add/delete hidden nodes. More over, this
mechanism may converge to the neighborhood of an
undesired attractor of min E

w
k(w) in which ▽w Ek(w) = 0;

for example, a relatively optimal solution or a saddle
point solution. Another possible failure is the case that
the current network structure is a defective one. All of
the above lead to an unacceptable result. These were
indicated in Figure 3: Path B indicates the situation when
the result of implementing the weight-tuning mechanism
is an unacceptable one; while Path A indicates the
situation when the result is an acceptable one.

A perfect weight-tuning mechanism that can avoid the
predicament of converging to an undesired attractor is
desirable, because the defective network structure will be
the only cause of obtaining an unacceptable result.
Unfortunately, there is no such perfect weight-tuning
mechanism currently. Under this confinement, together
with the consideration of the computing complexity, the
current weight-tuning mechanism is adopted. The
consideration of the computing complexity is very
important because the weight-tuning mechanism will be
triggered very frequently during the learning process.

Calculate
gradient

?ε)(Eif k ′>∇ ww

)(E k ww∇

 where ∆w is the preveious
 adjustment of w.

wwww w ∆+∇∗−= *ω)(Eη k
'

?)()(E if k
'

k ww Ε≤

 if η> ε" ?

Claim
undesired
attractor

 w´ w
 η 1.2 η
 η 0.5 ω

∗

 η 0.7 η
 ω 0.5 ω

∗

yes

yes

yes

no

no

no

no

c?εt),(Oif cc ∀<−wX
A

B

∗

∗

yes

Figure 3. The flow chart of the weight-tuning
mechanism implementing the momentum version of
the generalized delta rule with automatic adjustment
of learning rate. ε’ and ε’’ are given tiny numbers.

Recruiting extra hidden nodes is adopted to handle
these problems in Path B of Figure 3 as follows. Action
(b) in Step 3.2 restores the weights stored in Step 3.1.
Assume the goal of the previous stage is accomplished at
the end of the previous stage. Then, by restoring the
weights stored in Step 3.1, we return to the internal
representation that renders |O(cx, w) - ct| < ε for all c ∈
I(k-1) and |O(kx, w) - kt| ≧ ε. For Action (c) in Step 3.2,
there is a recruiting mechanism arranged to recruit two
extra hidden nodes with a gain parameter λ whose value
is initially 1 set via Action (a) in Step 3.2. These two
new-added hidden nodes, the p-1th and pth ones, have
weights 2wp-1

t = (ζ-λαt
kx, λαt), 2wp

t = (ζ+λαt
kx, -λαt), ζ =

10-6

1)I(kc
min

−∈
 |αt(kx - cx)|, 3wp-1 = 3wp = (tanh-1(kt) - 3w0 -

2-p

1i=
∑ 3wi h(kx, 2wi))/2tanh(ζ), where α is a unit vector that

αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1). For Action (d) in Step 3.2,
the λ value is fixed and the weight-tuning mechanism is
applied to render the goal (4) accomplished. If an
unacceptable result is obtained, we multiply the λ value
by 2, and repeat Actions (b), (c), and (d). The Actions (b),
(c), and (d) are repeated until the goal (4) is accomplished.

The arrangement of Actions (b), (c) and (d) is capable
of solving (1) the defectiveness of the network structure
via adding two hidden nodes, and (2) the predicament of
converging to an undesired attractor via introducing extra
dimensions in the weight space such that the trapped
attractor could be no longer an attractor in the new weight
space.

Recruiting two extra hidden nodes has introduced two
extra dimensions in the {h} space, thus has introduced
two extra dimensions in the internal representation. The
arrangement of 2wp-1 and 2wp has made the new
corresponding point h(kx, 2w) placed at the positive side
of each of these two new-added dimensions, and all other
new corresponding points h(cx, 2w)’s placed at the
positive side of one new-added dimension and at the
negative side of the other new-added dimension. A large
λ value renders the behavior of the activation functions of
the newly recruited p-1th and pth hidden nodes similar to
the behavior of a threshold function, and results in a
phenomenon that h(cx, 2wp-1) and h(cx, 2wp) numerically
equal 1 or –1 for almost all c ∈ I(k-1). Thus, as stated in
Lemma 1, the arrangement of such two new-added hidden
nodes with a large λ value has made the new
corresponding point h(kx, 2w) placed near the tanh(ζ)
position of each of these two new-added dimensions, and
all other new corresponding points h(cx, 2w)’s placed near
the –1 corner of one new-added dimension and near the
+1 corner of the other new-added dimension. Therefore,
as stated in Lemma 2, if the internal representation is
appropriate to render |O(cx, w) - ct| < ε for all c ∈ I(k-1)
and |O(kx, w) - kt| ≧ ε, after recruiting such two hidden
nodes, the new internal representation can be appropriate
for all k training samples. In other words, the
arrangement of such two new-added hidden nodes with a
large λ value is capable of solving the defectiveness of
the network structure via adding two hidden nodes.

It is difficult to identify the scenario (the sample input
sequence and the value of λ) for which the weight-tuning
mechanism will (or will not) achieve the goal (4), because
the surface defined by Ek(w) over the weight space is not
possible to analyze. However, Lemma 2 shows that the
goal (4) can be accomplished immediately via recruiting
merely two extra hidden nodes with proper weights and λ.
More over, Lemma 2 shows that there is no infinite loop
in Step 3.2. In other words, the arrangement of Actions
(b), (c) and (d) is capable of solving the predicament of
converging to an undesired attractor via introducing extra
dimensions in the weight space such that the trapped
attractor could be no longer an attractor in the new weight
space.

Therefore, Step 3.2 does ensure that the goal of each
stage is accomplished at the end of each stage, thus
guaranteeing an acceptable learning result obtained at the
end.

The recruiting mechanism handles the situation of
encountering an unacceptable result without involving the
reason. A defective network structure triggers the
recruiting mechanism; the situation of converging to an
undesired attractor also triggers the recruiting mechanism.
The recruiting mechanism triggered due to the situation

of converging to an undesired attractor may recruit excess
hidden nodes that later become irrelevant. At each stage,
a hidden node is irrelevant if the goal (4) is still
accomplished with this hidden node being deleted. The
irrelevant hidden nodes are useless with respect to the
goal (4); furthermore, they may contribute significant
effort to the performance of network and result in bad
generalization ability. More over, more samples typically
lead to more concise information about the appropriate
internal representation, and thus fewer hidden nodes are
required. It is therefore necessary to prune irrelevant
hidden nodes, and an internal representation is better if it
accomplishes the goal (4) with smaller amount of adopted
hidden nodes.

In Step 4, a reasoning mechanism is arranged to prune
all potentially irrelevant hidden nodes. At the kth stage, a
hidden node is potentially irrelevant if it is deleted and
the goal (4) can be accomplished via applying the weight-
tuning mechanism. In Step 4, every hidden node is
checked whether it is potentially irrelevant. Each
potentially irrelevant hidden node is deleted after being
identified.

3. The Performance and Analysis of the
Proposed Algorithm

Here we use two popular examples to examine how
the current arrangement for the recruiting and reasoning
mechanisms works: the encoding problem [1][11] and the
parity problem [11].

[1] has posed the encoding problem where a set of N
orthogonal input patterns are mapped to a set of N
orthogonal output patterns through a small set of hidden
nodes. Such problem requires a rather efficient way in
encoding an N bit pattern into a small set of hidden nodes
and then decoding this (internal) representation into the
output pattern. [11] has proposed that a set of N
orthogonal input patterns are mapped to a set of N
orthogonal output patterns through a small set of log2 N
hidden nodes. The reason behind such design is that if
the hidden nodes take on binary values, the hidden nodes
must form a binary number to encode each of the input
patterns. They present an encoding problem with an 8
input patterns, 8 output patterns, and 3 hidden nodes, and,
as shown in Table 2, they find the learning system
develop solutions that use the intermediate values.

Table 2. The mapping of the encoding problem
generated in [11].

Input
Patterns

Hidden Node
Patterns

 Output
Patterns

1 0 0 0 0 0 0 0 0.5 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0.5 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0.5 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0.5 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

Table 3. The mapping of the encoding problem
generated by the proposed algorithm.

Input
Patterns

 Hidden Node
Patterns

 Output
Patterns

1 0 0 0 0 0 0 0 0.1452 -0.9939 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 -0.1451 0.9926 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0.8070 -0.5973 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 -0.8416 0.6074 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0.9931 0.1794 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 -0.9920 -0.2055 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0.6247 0.8334 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 -0.6150 -0.8390 0 0 0 0 0 0 0 1

Our simulation result is encouraging: the proposed

algorithm employs the ability of the intermediate values
in a more efficient way. Table 3 shows the mapping of
the encoding problem generated by the proposed
algorithm. The proposed algorithm also uses
intermediate values to result in an appropriate internal
representation. The appropriate internal representations
shown in Table 2 and Table 3 are similar, except that the
former uses three hidden nodes and the latter uses two
hidden nodes. It seems that the reasoning mechanism
effectively prunes a potentially irrelevant hidden node,
which is likely to be the middle one in Table 2.

Table 4. The mapping of the 4-bit parity problem
generated in [11] and by the proposed algorithm.

Input
Patterns

Hidden
Node

Patterns
generated

in [11]

Hidden Node
Patterns generated

by the proposed
algorithm

Output
Patterns

0 0 0 0 1 1 1 1 0.8934 -0.9999 -0.9998 0
1 0 0 0 1 0 1 1 0.5254 -0.9371 -0.9972 1
0 1 0 0 1 0 1 1 0.5252 -0.9369 -0.9972 1
0 0 1 0 1 0 1 1 0.5252 -0.9367 -0.9972 1
0 0 0 1 1 0 1 1 0.5251 -0.9366 -0.9972 1
1 1 0 0 1 0 1 0 -0.2646 0.9338 -0.9630 0
1 0 1 0 1 0 1 0 -0.2647 0.9340 -0.9630 0
1 0 0 1 1 0 1 0 -0.2648 0.9341 -0.9630 0
0 1 1 0 1 0 1 0 -0.2649 0.9343 -0.9630 0
0 1 0 1 1 0 1 0 -0.2650 0.9344 -0.9630 0
0 0 1 1 1 0 1 0 -0.2651 0.9345 -0.9630 0
1 1 1 0 0 0 1 0 -0.8097 0.9999 -0.5882 1
1 1 0 1 0 0 1 0 -0.8097 0.9999 -0.5881 1
1 0 1 1 0 0 1 0 -0.8097 0.9999 -0.5881 1
0 1 1 1 0 0 1 0 -0.8098 0.9999 -0.5879 1
1 1 1 1 0 0 0 0 -0.9626 1.0000 0.5627 0

Table 4 shows the mapping of the 4-bit parity problem

generated in [11] and by the proposed algorithm. [11] has
proposed m hidden nodes required for the m-bit parity
problem, and noted that “the internal representation
created by the learning rule is to arrange that the number
of hidden units that come on is equal to the number of
zeros in the input and that the particular hidden units that
come on depend only on the number, not on which input
units are on.” By contrast, as shown in Table 4, the

appropriate internal representations developed in [11] and
by the proposed algorithm are similar, except that the
former uses four hidden nodes and the latter uses three
hidden nodes. The appropriate internal representations
developed by the proposed algorithm is to arrange that
these three hidden nodes also activates also via through
detecting the number of zeros in the input, not on which
input units are on.

Table 5 shows the summary of the simulation results
of m-bit parity problem, with the value of m from 2 to 6.
For each value of m, there are 100 cases, each with a
different randomly-generated input sequence. As shown
in Table 5, the average final number of adopted hidden
nodes for the m-bit parity problems is smaller than m and
the final number of adopted hidden nodes is less than m
in most cases.

Table 5. The minimum, maximum, mean and
standard deviation of number of adopted hidden
nodes for the m-bit parity problem, with the value of
m from 2 to 6. For each value of m, there are 100
cases, each with a different randomly-generated input
sequence.

m 2 3 4 5 6
Minimum 2 2 3 3 4

Mean 2 2.28 3.38 3.47 5.65
Maximum 2 4 5 5 17
Standard
Deviation 0 0.5924 0.5464 0.6428 2.3154

In summary, it seems that the current arrangement of

the recruiting and reasoning mechanisms in the proposed
algorithm works well that the internal representations
evolves in a better way than the one developed by the
generalized delta rule. Recall that an appropriate internal
representation with smaller amount of adopted hidden
nodes is better.

4. Discussions and Future Work

In this paper, a deterministic learning algorithm that
guarantees an acceptable learning result is proposed. The
proposed algorithm does not follow the ideas of genetic
inheritance and natural selection. During the process of
the proposed algorithm, the internal representation
evolves in a deterministic way to an appropriate one. The
key mechanisms of the proposed algorithm are (1) the
recruiting mechanism that can recruit proper extra hidden
nodes, and (2) the reasoning mechanism that can prune
potentially irrelevant hidden nodes. We provide
theoretical justification to explain why the proposed
algorithm guarantees an acceptable learning result.

The experimental results show that the proposed
algorithm also employs a similar ability of developing the
internal representation with the one shown in [11]. This
is not surprised since the proposed algorithm also adopts
in its weight-tuning mechanism the generalized delta rule
proposed in [10]. However, the experimental results
show that the current arrangement of the recruiting and
reasoning mechanisms in the proposed algorithm works

well that the internal representations evolves in a better
way than the internal representation developed by the
generalized delta rule.

There is a criticism when we apply the ANN to
practical problems: a black box obtained from the
learning. A further study is to explore the appropriate
internal representation obtained from the learning to
provide the knowledge behind the application and to get
rid of that criticism.

The simulation results show that the number of
adopted hidden nodes is a function of the sample input
sequence. As expected, some sample input sequences
cause difficulties in the associated processes, due to
encountering a defective network structure or the
predicament of converging to an undesired attractor. A
further investigation (theoretically or numerically) on the
surface defined by Ek(w) over the weight space is
currently under study to identify the scenario (the sample
input sequence and the value of λ) for which the weight-
tuning mechanism will (or will not) achieve the goal (4).
Another study involves exploring (1) a better recruiting
mechanism to recruit hidden nodes and (2) a better
reasoning mechanism to prune potentially irrelevant
hidden nodes in a much more efficient way.

5. Appendix: Theoretical Supports and their
Proofs.
Lemma 1: Let {cx| ∀ c ∈ I(k)} be given, and assume 2wp-

1
t = (ζ-λαt

kx, λαt), 2wp
t = (ζ+λαt

kx, -λαt), where λ is a
given large number. Then, there exists a unit vector α
and a tiny positive number ζ that render h(cx, 2wp-1) + h(cx,
2wp) ≅ 0.0 (Hereafter, F(x) ≅ y means that, numerically,
the value of F(x) is y.) ∀ c ∈ I(k-1) and h(kx, 2wp-1) + h(kx,
2wp) = 2tanh(ζ).

Proof:

∵ 2wp-1

t = (ζ - λαt
kx, λαt),

∴ 2wp-10 +
m

1j=
∑ 2wp-1j cxj = ζ + λ(αt

 cx - αt
 kx).

Similarly, 2wp0 +
m

1j=
∑ 2wpj cxj = ζ + λ(αt

 kx - αt
 cx).

∵ { cx| ∀ c ∈ I(k)} is given,
∴ kx - cx is known for every c ∈ I(k-1).

With a reasonable assumption that the amount of
samples is finite, i.e., I(k) is a finite set, there exists a unit
vector α that αt(kx - cx) ≠ 0 ∀ c ∈ I(k-1). Then, ζ is
assigned as 10-6

1)I(kc
min

−∈
|αt(kx - cx)|.

Since λ is a large value and ζ = 10-6

1)I(kc
min

−∈
|αt(kx - cx)|,

h(cx, 2wp-1) = tanh(ζ + λ(αt
 cx - αt

 kx)) ≅ tanh(λ(αt
 cx - αt

kx)) and h(cx, 2wp) = tanh(ζ + λ(αt
 kx - αt

 cx)) ≅ -tanh(λ(αt

cx - αt
 kx)). Thus, h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀c∈ I(k-

1).
∵ h(kx, 2wp-1) = h(kx, 2wp) = tanh(ζ),

∴ h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ).

Q.E.D.

Lemma 2: Assume O(cx, w) = tanh(3w0 + ∑
2-p

1i=
3wi h(cx,

2wi)), |O(cx, w) - ct| < ε ∀ c ∈ I(k-1), and |O(kx, w) – kt| ≧
ε. With recruiting two hidden nodes, h(cx, 2wp-1) ≡

tanh(2wp-10 + ∑
m

1j=
2wp-1j cxj) and h(cx, 2wp) ≡ tanh(2wp0 +

m

1j=
∑

2-p

1i=
∑

2wpj cxj), the new value of O(cx, w) equals tanh(3w0 +

3wi h(cx, 2wi) + 3wp-1 h(cx, 2wp-1) + 3wp h(cx, 2wp)).

Then, there exist 2wp-1, 2wp, 3wp-1 and 3wp that render the
new value of |O(cx, w) - ct| < ε ∀ c ∈ I(k).

Proof:

Let cy’ and cy be the values of O(cx, w) before and
after introducing two hidden nodes, respectively. Also let

cnet be the value of 3w0 +
2-p

1i=
∑ 3wi h(cx, 2wi) before

introducing two hidden nodes. Thus, cy’ = tanh(cnet) and
cy = tanh(cnet + 3wp-1 h(cx, 2wp-1) + 3wp h(cx, 2wp)).
∵ |O(cx, w) - ct| < ε ∀ c ∈ I(k-1) and |O(kx, w) – kt| ≧ ε
before introducing two hidden nodes,
∴ |cy’ - ct| < ε ∀ c ∈ I(k-1) and |ky’ – kt| ≧ ε.

Let λ, 2wp-1 and 2wp be assigned as in Lemma 1. Thus,
from Lemma 1, h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀ c ∈ I(k-1)
and h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ). Let 3wp-1 = 3wp =
γ, where γ = (tanh-1(kt) - knet)/2tanh(ζ).
∵ 3wp-1 = 3wp and h(cx, 2wp-1) + h(cx, 2wp) ≅ 0.0 ∀ c ∈
I(k-1),
∴ cy ≅ cy’ ∀ c ∈ I(k-1).
Therefore, |cy - ct| < ε ∀ c ∈ I(k-1) since |cy’ - ct| < ε ∀ c
∈ I(k-1).
∵ h(kx, 2wp-1) + h(kx, 2wp) = 2tanh(ζ),
∴ ky = tanh(knet + γ 2tanh(ζ)) = kt. Thus |ky – kt| < ε.

 Q.E.D.

References
[1] Ackley, D., Hinton, G., & Sejnowski, T. (1985). A learning
algorithm for Boltzmann machines. Cognitive Science, 9, 147－

169.
[2] Blank, S. (1991). Chaos in futures market? A nonlinear
dynamical analysis. J. Futures Markets, 11, 711－728.
[3] Chen, Y., Thomas, D., & Nixon, M. (1994). Generating-
Shrinking Algorithm for Learning Arbitrary Classification.
Neural Networks, 7, 1477－1489.
[4] DeCoster, G., Labys, W., & Mitchell, D. (1992). Evidence of
chaos in commodity futures prices. J. Futures Markets, 12, 291
－305.
[5] Fahlman, S., & Lebiere, C. (1990) The Cascade-Correlation
Learning Architecture. In Touretzky, D. (Eds.), Advances in

Neural Information Processing Systems II (Denver, 1989), San
Mateo: Morgan Kaufmann.
[6] Frean, M. (1990). The Upstart Algorithm: A Method for
Constructing and Training Feedforward Neural Networks.
Neural Computation, 2, 198－209.
[7] Grudnitski, G., & Osburn, L. (1993). Forecasting S & P and
gold futures prices: an application of neural networks. J.
Futures Markets, 13, 631－643.
[8] Hutchinson, J., Lo, A., & Poggio, T. (1994). A
nonparametric approach to pricing and hedging derivative
securities via learning networks. J. Finance, 49 (3), 851－889.
[9] Me’zard, M., & Nadal, J. (1989). Learning in Feedforward
Layered Networks: The Tiling Algorithm. Journal of Physics
A, 22, 2191－2204.
[10] Rumelhart, D., Hinton, G. & Williams, R. (1986a).
Learning Internal Representations By Error Propagation. In
Rumelhart, D. & McClelland J. (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
Vol. 1 (pp. 318-362). Cambridge, MA: MIT Press.
[11] Rumelhart, D., Hinton, G., & Williams, R. (1986b).
Learning Internal Representations By Error Propagation. In
Rumelhart, D. & McClelland J. (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
Vol. 1 (pp. 335-337). Cambridge, MA: MIT Press.
[12] Tsaih, R. (1993). The Softening Learning Procedure.
Mathematical and Computer Modelling, Vol. 18, No. 8, 61－

64.
[13] Tsaih, R. (1997). The Reasoning Neural Networks. In
Ellacott S., J. Mason & I. Anderson (Eds.), Mathematics of
Neural Networks: Models, Algorithms and Applications, (pp.
366-371). Kluwer Academic publishers, London.
[14] Tsaih, R. (1998). An Explanation of Reasoning Neural
Networks. Mathematical and Computer Modelling, Vol. 28, No.
2, 37－44.
[15] Tsaih, R., Hsu, Y., & Lai, C. (1998). Forecasting S&P 500
Stock Index Futures with the Hybrid AI system. Decision
Support Systems, Vol. 23, No. 2, 161－174.
[16] Watanabe, E., & Shimizu, H. (1993). Algorithm for
Pruning Hidden nodes in Multi-Layered Neural Network for
Binary Pattern Classification Problem, in Proc. International
Joint Conference on Neural Networks, I, 1993, 327－330.
[17] Yao, X. (1993). A Review of Evolutionary Artificial
Neural Networks. International Journal of Intelligent Systems, 8
(4), 539－567.

	The Evolution of Internal Representation
	Example for CIRAS Article

