306 research outputs found

    Tempo and mode of planktonic foraminiferal evolution

    Get PDF
    Abstrac

    Towards Highly Accurate and Stable Face Alignment for High-Resolution Videos

    Full text link
    In recent years, heatmap regression based models have shown their effectiveness in face alignment and pose estimation. However, Conventional Heatmap Regression (CHR) is not accurate nor stable when dealing with high-resolution facial videos, since it finds the maximum activated location in heatmaps which are generated from rounding coordinates, and thus leads to quantization errors when scaling back to the original high-resolution space. In this paper, we propose a Fractional Heatmap Regression (FHR) for high-resolution video-based face alignment. The proposed FHR can accurately estimate the fractional part according to the 2D Gaussian function by sampling three points in heatmaps. To further stabilize the landmarks among continuous video frames while maintaining the precise at the same time, we propose a novel stabilization loss that contains two terms to address time delay and non-smooth issues, respectively. Experiments on 300W, 300-VW and Talking Face datasets clearly demonstrate that the proposed method is more accurate and stable than the state-of-the-art models.Comment: Accepted to AAAI 2019. 8 pages, 7 figure

    Detecting genuine multipartite entanglement via machine learning

    Full text link
    In recent years, supervised and semi-supervised machine learning methods such as neural networks, support vector machines (SVM), and semi-supervised support vector machines (S4VM) have been widely used in quantum entanglement and quantum steering verification problems. However, few studies have focused on detecting genuine multipartite entanglement based on machine learning. Here, we investigate supervised and semi-supervised machine learning for detecting genuine multipartite entanglement of three-qubit states. We randomly generate three-qubit density matrices, and train an SVM for the detection of genuine multipartite entangled states. Moreover, we improve the training method of S4VM, which optimizes the grouping of prediction samples and then performs iterative predictions. Through numerical simulation, it is confirmed that this method can significantly improve the prediction accuracy.Comment: 9 pages, 8 figure

    Resonance instability of primordial gravitational waves during inflation in Chern-Simons gravity

    Full text link
    We investigate axion inflation where the gravitational Chern-Simons term is coupled to a periodic function of the inflaton. We find that tensor perturbations with different polarizations are amplified in different ways by the Chern-Simons coupling. Depending on the model parameters, the resonance amplification results in a parity-violating peak or a board plateau in the energy spectrum of gravitational waves, and the sharp cutoff in the infrared region constitutes a characteristic distinguishable from stochastic gravitational wave backgrounds produced by matter fields in Einstein gravity.Comment: 16 pages, 4 figure

    A consistent and conservative diffuse-domain lattice Boltzmann method for multiphase flows in complex geometries

    Full text link
    Modeling and simulation of multiphase flows in complex geomerties are challenging due to the complexity in describing the interface topology changes among different phases and the difficulty in implementing the boundary conditions on the irregular solid surface. In this work, we first developed a diffuse-domain (DD) based phase-field model for multiphase flows in complex geometries. In this model, the irregular fluid region is embedded into a larger and regular domain by introducing a smooth characteristic function. Then, the reduction-consistent and conservative phase-field equation for the multiphase field and the consistent and conservative Navier-Stokes equations for the flow field are reformulated as the diffuse-domain based consistent and conservative (DD-CC) equations where some additional source terms are added to reflect the effects of boundary conditions. In this case, there is no need to directly treat the complex boundary conditions on the irregular solid surface, and additionally, based on a matched asymptotic analysis, it is also shown that the DD-CC equations can converge to the original governing equations as the interface width parameter tends to zero. Furthermore, to solve the DD-CC equations, we proposed a novel and simple lattice Boltzmann (LB) method with a Hermite-moment-based collision matrix which can not only keep consistent and conservation properties, but also improve the numerical stability with a flexible parameter. With the help of the direct Taylor expansion, the macroscopic DD-CC equations can be recovered correctly from the present LB method. Finally, to test the capacity of LB method, several benchmarks and complex problems are considered, and the numerical results show that the present LB method is accurate and efficient for the multiphase flows in complex geomerties.Comment: 22 pages, 9 figure
    corecore