17 research outputs found

    Attention Where It Matters: Rethinking Visual Document Understanding with Selective Region Concentration

    Full text link
    We propose a novel end-to-end document understanding model called SeRum (SElective Region Understanding Model) for extracting meaningful information from document images, including document analysis, retrieval, and office automation. Unlike state-of-the-art approaches that rely on multi-stage technical schemes and are computationally expensive, SeRum converts document image understanding and recognition tasks into a local decoding process of the visual tokens of interest, using a content-aware token merge module. This mechanism enables the model to pay more attention to regions of interest generated by the query decoder, improving the model's effectiveness and speeding up the decoding speed of the generative scheme. We also designed several pre-training tasks to enhance the understanding and local awareness of the model. Experimental results demonstrate that SeRum achieves state-of-the-art performance on document understanding tasks and competitive results on text spotting tasks. SeRum represents a substantial advancement towards enabling efficient and effective end-to-end document understanding.Comment: Accepted to ICCV 2023 main conferenc

    Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in <i>Nicotiana benthamiana</i>

    No full text
    Recently, begomovirus/betasatellite disease complexes were found to be associated with alphasatellites, and their presence modulated disease symptoms and/or viral DNA accumulation in infected plants. However, the biological functions of alphasatellites during begomovirus/betasatellite infections remain unclear. Tomato yellow leaf curl China virus (TYLCCNV) associated with a betasatellite (TYLCCNB) is a widespread monopartite begomovirus in China. In the Yunnan province of China, the TYLCCNV/TYLCCNB disease complex is found in association with an alphasatellite (TYLCCNA). In this study, in order to explain the mechanisms underlying TYLCCNV/TYLCCNB infection and reductions in viral DNA accumulation caused by TYLCCNA, we analyzed the transcriptome profiles of Nicotiana benthamiana seedlings challenged by TYLCCNV/TYLCCNB or TYLCCNV/TYLCCNB/TYLCCNA using RNA sequencing. In total, 2272 and 1207 differentially expressed genes (DEGs) were identified to respond to TYLCCNV/TYLCCNB and TYLCCNV/TYLCCNB/TYLCCNA infections, respectively. Compared with the DEGs in the TYLCCNV/TYLCCNB-infected N. benthamiana seedlings, the number of DEGs in plants co-infected with TYLCCNV/TYLCCNB + TYLCCNA was significantly reduced. Additionally, 36 DEGs were identified to be regulated by TYLCCNA, six of which were further analyzed using the virus-induced gene silencing (VIGS) approach. Silencing of these six TYLCCNA responsive DEGs caused more severe disease symptoms and higher viral DNA accumulation levels, suggesting that TYLCCNA responsive DEGs may attenuate TYLCCNV/TYLCCNB infection

    Homeoprotein SIX1 compromises antitumor immunity through TGF-Ī²-mediated regulation of collagens

    No full text
    The tumor microenvironment (TME), including infiltrated immune cells, is known to play an important role in tumor growth; however, the mechanisms underlying tumor immunogenicity have not been fully elucidated. Here, we discovered an unexpected role for the transcription factor SIX1 in regulating the tumor immune microenvironment. Based on analyses of patient datasets, we found that SIX1 was upregulated in human&nbsp;tumor tissues and that its expression levels were negatively correlated with immune cell infiltration in the TME and the overall survival rates of cancer patients. Deletion of Six1 in cancer cells significantly reduced tumor growth in an immune-dependent manner with enhanced antitumor immunity in the TME. Mechanistically, SIX1 was required for the expression of multiple collagen genes via the TGFBR2-dependent Smad2/3 activation pathway, and collagen deposition in the TME hampered immune cell infiltration and activation. Thus, our study uncovers a crucial role for SIX1 in modulating tumor immunogenicity and provides proof-of-concept evidence for targeting SIX1 in cancer immunotherapy

    Integrated tumor genomic and immune microenvironment analysis identifies predictive biomarkers associated with the efficacy of neoadjuvant therapy for tripleā€negative breast cancer

    No full text
    Abstract Background Although neoadjuvant chemotherapy (NAC) is currently the best therapy for tripleā€negative breast cancer (TNBC), resistance still occurs in a considerable proportion, thus it is crucial to understand resistance mechanisms and identify predictive biomarkers for patients selection. Methods Biopsy samples were collected from 21 patients with TNBC who underwent NAC. Wholeā€exome sequencing (WES), targeted sequencing, and multiplex immunohistochemistry (mIHC) were carried out on the clinical samples and used to identify and validate potential biomarkers associated with response to NAC. In addition, data on 190 TNBC patients who had undergone chemotherapy were obtained from The Cancer Genome Atlas (TCGA) and analyzed to further validate our findings. Results Both the tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were significantly higher in responders than in nonā€responders. Higher response rates and longer survival rates were observed in patients with higher TMB. Patients with higher ratios of CD8 to M2 macrophages had higher response rates and improved survival rates. Finally, the integrated analysis demonstrated that the combination of TMB and the ratio of CD8 T cells to M2 macrophages could further distinguish patients who benefitted from the treatment in both enrolled patients and public data. Conclusions The findings of this study indicated that the combination of TMB and the ratio of CD8 T cells to M2 macrophages may be a potential biomarker for improving the recognition of NAC responders, thereby providing a basis for developing precision NAC regimens

    ADP-ribosyltransferase PARP11 suppresses Zika virus in synergy with PARP12.

    No full text
    BackgroundZika virus (ZIKV) infection and ZIKV epidemic have been continuously spreading silently throughout the world and its associated microcephaly and other serious congenital neurological complications poses a significant global threat to public health. Type I interferon response to ZIKV infection in host cells suppresses viral replication by inducing the expression of interferon-stimulated genes (ISGs).MethodsThe study aims to demonstrate the anti-ZIKV mechanism of PARP11. PARP11 knock out and overexpressing A549 cell lines were constructed to evaluate the anti-ZIKV function of PARP11. PARP11-/-, PARP12-/- and PARP11-/-PARP12-/- HEK293T cell lines were constructed to explain the synergistic effect of PARP11 and PARP12 on NS1 and NS3 protein degradation. Western blotting, immunofluorescence and immunoprecipitation assay were performed to illustrate the interaction between PARP11 and PARP12.ResultsBoth mRNA and protein levels of PARP11 were induced in WT but not IFNAR1-/- cells in response to IFNĪ± or IFNĪ² stimulation and ZIKV infection. ZIKV replication was suppressed in cells expressed PARP11 but was enhanced in PARP11-/- cells. PARP11 suppressed ZIKV independently on itself PARP enzyme activity. PARP11 interacted with PARP12 and promoted PARP12-mediated ZIKV NS1 and NS3 protein degradation.ConclusionWe identified ADP-ribosyltransferase PARP11 as an anti-ZIKV ISG and found that it cooperated with PARP12 to enhance ZIKV NS1 and NS3 protein degradation. Our findings have broadened the understanding of the anti-viral function of ADP-ribosyltransferase family members, and provided potential therapeutic targets against viral ZIKV infection

    Interferon-stimulated gene PVRL4 broadly suppresses viral entry by inhibiting viral-cellular membrane fusion

    No full text
    Abstract Background Viral infection elicits the type I interferon (IFN-I) response in host cells and subsequently inhibits viral infection through inducing hundreds of IFN-stimulated genes (ISGs) that counteract many steps in the virus life cycle. However, most of ISGs have unclear functions and mechanisms in viral infection. Thus, more work is required to elucidate the role and mechanisms of individual ISGs against different types of viruses. Results Herein, we demonstrate that poliovirus receptor-like protein4 (PVRL4) is an ISG strongly induced by IFN-I stimulation and various viral infections. Overexpression of PVRL4 protein broadly restricts growth of enveloped RNA and DNA viruses, including vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whereas deletion of PVRL4 in host cells increases viral infections. Mechanistically, it suppresses viral entry by blocking viral-cellular membrane fusion through inhibiting endosomal acidification. The vivo studies demonstrate that Pvrl4-deficient mice were more susceptible to the infection of VSV and IAV. Conclusion Overall, our studies not only identify PVRL4 as an intrinsic broad-spectrum antiviral ISG, but also provide a candidate host-directed target for antiviral therapy against various viruses including SARS-CoV-2 and its variants in the future

    Multi-omics analysis uncovers tumor ecosystem dynamics during neoadjuvant toripalimab plus nab-paclitaxel and S-1 for esophageal squamous cell carcinoma: a single-center, open-label, single-arm phase 2 trialResearch in context

    No full text
    Summary: Background: Immune checkpoint inhibitors combined with chemotherapy as a neoadjuvant therapy have been applied to the treatment of esophageal squamous cell carcinoma (ESCC). However, the optimal regimen needs to be further explored, particularly for older patients, and the mechanisms by which the immune checkpoint inhibitor combined with chemotherapy modulates the evolution of ESCC are unknown. Methods: In this single-arm phase 2 trial, patients with resectable (stage II/III/IV without metastasis) ESCC were enrolled and received nanoparticle albumin-bound (nab) paclitaxel for two cycles and oral S-1 for 2 weeks, combined with intravenous toripalimab for two cycles before surgery. Combination postoperative adjuvant therapy was administered. The primary outcome was the major pathological response (MPR). Secondary outcomes included pathological complete response (pCR), overall response rate (ORR), disease control rate (DCR), disease-free survival (DFS), overall survival (OS), improvement in Stooler's dysphagia score and degree of daily living ability (dADL). Biopsies and plasma pre- and post-neoadjuvant therapy were performed using whole-exome sequencing, transcriptome sequencing, immunohistochemistry (IHC) for PD-L1, multiplex immunofluorescence (mIF) and proximity extension assay technology (PEA) for 92 proteins. Findings: From November 2019 to July 2021, 60 patients were enrolled. After neoadjuvant therapy, R0 resection was achieved in 55 (98.21%) patients. MPR was identified in 27 patients (49.09%), and 16 patients (29.09%) achieved pCR. Patients with PR, SD and PD were 37 (61.67%), 21 (35.00%) and 2 (3.33%), respectively. The overall staging, Stooler dysphagia scores and dADL were significantly decreased after treatment. 11 patients (18.3%) experienced grade ā‰„3 AEs. Compared to PD-L1-Low patients, PD-L1-High patients had a significantly higher ratio of PR. During therapy, the tumor mutation burden (TMB) and tumor neoantigen burden (TNB) were significantly decreased in patients with PR. Differential clonal evolution within tumors was demonstrated by analysis of intratumoral heterogeneity. Transcriptome analyses revealed that the infiltration of CD4+ T lymphocytes at baseline was associated with clinical outcome. During therapy, CD8+ T cells and CD4+ T cells were increased in all patients; however, exhausted cells, nTregs and iTregs were significantly increased in patients with non-MPR. Protein analyses revealed that the levels of IFN-Ī³, Gal.1 and LAMP3 can predict the clinical benefit. In addition, the expression of CD83, TNFRSF4, TNFSF14, VEGFR2, ADA, ARG1, and HO-1 was associated with serious AEs. More importantly, the integration of CD4+ T cells with plasma protein of IFN-Ī³, Gal.1 or LAMP3 could further distinguish responders from non-responders. Interpretation: In this study, neoadjuvant therapy with toripalimab, nab-paclitaxel and S-1 was less toxic and showed promising antitumor activity in patients with resectable ESCC. Changes in the genome, transcriptome, PD-L1 expression and serum proteins were comprehensively analyzed and correlated with clinical outcomes, which provides insight into the mechanism of action of toripalimab combined with nab-paclitaxel and S-1 in patients with ESCC. Funding: This study was funded by Major projects of the ministry of science and technology of the 13th five-year plan of China [grant number: 2018ZX09201013]
    corecore