156 research outputs found

    (Z)-3-(3,4-Dimeth­oxy­phen­yl)-3-(4-fluoro­phen­yl)-1-morpholino­prop-2-en-1-one

    Get PDF
    The title compound, C21H22FNO4, is an isomer of flumorph (systematic name 4-[3-(3,4-dimethoxyphenyl)-3-(4-fluorophenyl)-1-oxo-2-propenyl]morpholine), which was developed by Shenyang research institute of chemical industry and used as fungicide. The mol­ecule adopts a Z configuration about the C=C double bond. The dihedral angle between the two benzene rings is 73.45 (11)°

    Shubnikov-de Haas oscillations of a single layer graphene under dc current bias

    Full text link
    Shubnikov-de Haas (SdH) oscillations under a dc current bias are experimentally studied on a Hall bar sample of single layer graphene. In dc resistance, the bias current shows the common damping effect on the SdH oscillations and the effect can be well accounted for by an elevated electron temperature that is found to be linearly dependent on the current bias. In differential resistance, a novel phase inversion of the SdH oscillations has been observed with increasing dc bias, namely we observe the oscillation maxima develop into minima and vice versa. Moreover, it is found that the onset biasing current, at which a SdH extremum is about to invert, is linearly dependent on the magnetic field of the SdH extrema. These observations are quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde

    Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization

    Get PDF
    Natural gas hydrates have been treated as a potential energy resource for decades. Understanding geomechanical properties of hydrate-bearing porous media is an essential to protect the safety of individuals and devices during hydrate production. In this work, a numerical simulator named GrapeFloater is developed to study the deformation behavior of hydrate-bearing porous media during depressurization, and the numerical simulator couples multiple processes such as conductive-convective heat transfer, two-phase fluid flow, intrinsic kinetics of hydrate dissociation, and deformation of solid skeleton. Then, a depressurization experiment is carried out to validate the numerical simulator. A parameter sensitivity analysis is performed to discuss the deformation behavior of hydrate-bearing porous media as well as its effect on production responses. Conclusions are drawn as follows: the numerical simulator named GrapeFloater predicts the experimental results well; the modulus of hydrate-bearing porous media has an obvious effect on production responses; final deformation increases with decreasing outlet pressure; both the depressurization and the modulus decrease during hydrate dissociation contribute to the deformation of hydrate-bearing porous media.Cited as: Liu, L., Lu, X., Zhang, X., et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization. Advances in Geo-Energy Research, 2017, 1(3): 135-147, doi: 10.26804/ager.2017.03.0

    Application of photo-crosslinkable gelatin methacryloyl in wound healing

    Get PDF
    Wound healing is a complex and coordinated biological process easily influenced by various internal and external factors. Hydrogels have immense practical importance in wound nursing because of their environmental moisturising, pain-relieving, and cooling effects. As photo-crosslinkable biomaterials, gelatine methacryloyl (GelMA) hydrogels exhibit substantial potential for tissue repair and reconstruction because of their tunable and beneficial properties. GelMA hydrogels have been extensively investigated as scaffolds for cell growth and drug release in various biomedical applications. They also hold great significance in wound healing because of their similarity to the components of the extracellular matrix of the skin and their favourable physicochemical properties. These hydrogels can promote wound healing and tissue remodelling by reducing inflammation, facilitating vascularisation, and supporting cell growth. In this study, we reviewed the applications of GelMA hydrogels in wound healing, including skin tissue engineering, wound dressing, and transdermal drug delivery. We aim to inspire further exploration of their potential for wound healing

    Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment

    Get PDF
    Evolution behaviors of triaxial shearing parameters are very important for geo-technical re- sponse analysis during the process of extracting natural gas from hydrate-bearing reservoirs. In order to explore the effects of hydrate formation/decomposition on triaxial shearing behaviors of intermediate fine sediment, natural beach sand in Qingdao, China, which was sieved from 0.1 to 0.85 mm, was used and a series of triaxial shear tests were carried out in this paper. The principle of critical state was firstly used to explain the mechanism of strain softening and/or hardening failure mode. Moreover, an empirical model was provided for axial-lateral strain and corresponding model parameters calculation. Evolution rules of critical strength parameters were analyzed prominently. The results show that failure mode of sediment is controlled by several parameters, such as effective confining pressure, hydrate saturation, etc. Different axial-lateral strain model coefficients’ effect on strain relationships are different, probing into the physical meaning of each coefficient is essential for further understanding of strain relationships. Complex geo-technical response should be faced with the progress of producing natural gas from hydrate-bearing reservoir, because of sudden change of failure pattern and formation modulus. Further compressive study on critical condition of failure pattern is needed for proposed promising hydrate-bearing reservoirs.Cited as: Li, Y., Liu, C., Liu, L., Sun, J., Liu, H., Meng, Q. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment. Advances in Geo-Energy Research, 2018, 2(1): 43-52, doi: 10.26804/ager.2018.01.0

    Development of multifunctional unmanned aerial vehicles versus ground seeding and outplanting: What is more effective for improving the growth and quality of rice culture?

    Get PDF
    The agronomic processes are complex in rice production. The mechanization efficiency is low in seeding, fertilization, and pesticide application, which is labor-intensive and time-consuming. Currently, many kinds of research focus on the single operation of UAVs on rice, but there is a paucity of comprehensive applications for the whole process of seeding, fertilization, and pesticide application. Based on the previous research synthetically, a multifunctional unmanned aerial vehicle (mUAV) was designed for rice planting management based on the intelligent operation platform, which realized three functions of seeding, fertilizer spreading, and pesticide application on the same flight platform. Computational fluid dynamics (CFD) simulations were used for machine design. Field trials were used to measure operating parameters. Finally, a comparative experimental analysis of the whole process was conducted by comparing the cultivation patterns of mUAV seeding (T1) with mechanical rice direct seeder (T2), and mechanical rice transplanter (T3). The comprehensive benefit of different rice management processes was evaluated. The results showed that the downwash wind field of the mUAV fluctuated widely from 0 to 1.5 m, with the spreading height of 2.5 m, and the pesticide application height of 3 m, which meet the operational requirements. There was no significant difference in yield between T1, T2, and T3 test areas, while the differences in operational efficiency and input labor costs were large. In the sowing stage, T1 had obvious advantages since the working efficiency was 2.2 times higher than T2, and the labor cost was reduced by 68.5%. The advantages were more obvious compared to T3, the working efficiency was 4 times higher than in T3, and the labor cost was reduced by 82.5%. During the pesticide application, T1 still had an advantage, but it was not a significant increase in advantage relative to the seeding stage, in which operating efficiency increased by 1.3 times and labor costs were reduced by 25%. However, the fertilization of T1 was not advantageous due to load and other limitations. Compared to T2 and T3, operational efficiency was reduced by 80% and labor costs increased by 14.3%. It is hoped that this research will provide new equipment for rice cultivation patterns in different environments, while improving rice mechanization, reducing labor inputs, and lowering costs
    corecore