156 research outputs found
GR-362 SCALE-Sim extension to support GNN inputs and CNN back propagation
In recent years, CNNs (Convolutional neural Network) and GNNs (Graph Neural Network) have gained a lot of attention and popularity in various fields such as computer vision, natural language processing, and social network analysis. Training large scale CNN and GNN models may take up to several months or sometimes years to complete. SCALE-Sim is a CNN accelerator with systolic array and SRAMs. However, SCALE-Sim only support CNN inference and not back propagation. To evaluate the CNN training, in this work we extend the SCALE-Sim to support CNN back propagation. Because the importance of the GNN applications and their training bottlenecks, we also explore how to integrate GNN training in SCALE-Sim via GraphSAGE to generate node embedding. The goal of this work is to extend SCALE-Sim to support CNN and GNN training, which enable us to evaluate the efficiency of machine training systems
Recommended from our members
Identification and Characterization of the PEBP Family Genes in Moso Bamboo (Phyllostachys heterocycla).
Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest
A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature
Polyneuropathy as Novel Initial Manifestation in a Case of “Nonsecretory” POEMS Syndrome with Sjögren’s Syndrome
POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes) is a paraneoplastic syndrome driven by plasma cell dyscrasias. We report a patient with novel initial manifestation of polyneuropathy, which was considered due to Sjögren’s syndrome but with poor response to methylprednisolone (120 mg/d) and intravenous immunoglobulin (IVIg). Further investigation by imaging tests and following biopsy eventually confirmed the diagnosis of POEMS syndrome secondary to solitary plasmocytoma. To our knowledge, this is the first reported case of POEMS syndrome with Sjögren’s syndrome occurring in the absence of a peripheral monoclonal gammopathy, highlighting the diagnostic challenges posed by this disease and reviewing the diagnostic role of (18) F-FDG PET/CT in POEMS syndrome
Functional and morphological evolution in gymnosperms : a portrait of implicated gene families
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water‐conducting systems, secondary metabolism, stress defense mechanisms, and small RNA‐mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole‐genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications
The Designer Antimicrobial Peptide A-hBD-2 Facilitates Skin Wound Healing by Stimulating Keratinocyte Migration and Proliferation
Background/Aims: Antimicrobial peptides are effective promoters of wound healing but are susceptible to degradation. In this study, we replaced the GIGDP unit on the N-terminal of the endogenous human antimicrobial peptide hBD-2 with APKAM to produce A-hBD-2 and analyzed the effect on wound healing both in vitro and in vivo. Methods: The effects of A-hBD-2 and hBD-2 on cytotoxicity and proliferation in keratinocytes were assessed by Cell Counting Kit-8 assay. The structural stability and antimicrobial activity of hBD-2 and A-hBD-2 were evaluated against Staphylococcus aureus. RNA and proteins levels were evaluated by real-time PCR and western blotting, respectively. Cell migration was evaluated using a transwell assay. Cell cycle analysis was performed by flow cytometry. Wound healing was assessed in Sprague-Dawley rats. Epidermal thickness was evaluated by hematoxylin and eosin staining. Results: We found that hBD-2 exhibited cytotoxicity at high concentrations and decreased the structural stability in the presence of high sodium chloride concentrations. A-hBD-2 exhibited increased structural stability and antimicrobial activity, and had lower cytotoxicity in keratinocytes. A-hBD-2 increased the migration and proliferation of keratinocytes via phosphorylation of EGFR and STAT3 and suppressed terminal differentiation of keratinocytes. We also found that A-hBD-2 elicited mobilization of intracellular Ca2+ and stimulated keratinocytes to produce pro- and anti-inflammatory cytokines and chemokines via phospholipase C activation. Furthermore, A-hBD-2 promoted wound healing in vivo. Conclusion: Our data suggest that A-hBD-2 may be a promising candidate therapy for wound healing
Cell membrane coated nanoparticles:cutting-edge drug delivery systems for osteoporosis therapy
Osteoporosis, characterized by a reduction in bone mineral density, represents a prevalent skeletal disorder with substantial global health implications. Conventional therapeutic strategies, exemplified by bisphosphonates and hormone replacement regimens, though effective, encounter inherent limitations and challenges. Recent years have witnessed the surge of cell-membrane-coated nanoparticles (CMNPs) as a promising intervention for osteoporosis, leveraging their distinct attributes including refined biocompatibility, heightened pharmaceutical payload capacity, as well as targeted drug release kinetics. However, a comprehensive review consolidating the application of CMNPs-based therapy for osteoporosis remains absent within the existing literature. In this review, we provide a concise overview of the distinctive pathogenesis associated with osteoporosis, alongside an in-depth exploration of the physicochemical attributes intrinsic to CMNPs derived from varied cellular sources. Subsequently, we explore the potential utility of CMNPs, elucidating emerging trends in their deployment for osteoporosis treatment through multifaceted therapeutic approaches. By linking the notable attributes of CMNPs with their roles in mitigating osteoporosis, this review serves as a catalyst for further advances in the design of advanced CMNPs tailored for osteoporosis management. Ultimately, such progress is promising for enhancing outcomes in anti-bone loss interventions, paving the way for clinical translation in the near future.</p
Finite element analysis of different fixation methods of screws on absorbable plate for rib fractures
Multiple rib fractures caused by trauma are common injuries and the internal fixation methods of these injuries have been paid more and more attention by surgeons. Absorbable plates and screws are the effective way to treat rib fractures, but there are no reports on which type of screw fixation method is most effective. In this study, finite element analysis was used to study the effects of five different types of screw fixation methods on anterior rib, lateral rib and posterior rib. The finite element model of the ribs was reconstructed from CT images, and the internal pressure (40 kPa) and intercostal force (30 N) on the surfaces of the ribs were simulated accordingly. An intercostal force of 30 N was applied to the upper and lower surfaces of the ribs to simulate the effect of intercostal muscle force. The pressure of 40 kPa was applied to the inner surface of the ribs, and the normal direction was applied to the inner surface of the ribs. The positive direction was considered inspiratory pressure, and the negative direction was considered expiratory pressure. The results indicate the optimal type of screw fixation on the absorbable plate for rib fractures, and provide a basis and reference for clinical application
Immunomodulatory Hydrogels:Advanced Regenerative Tools for Diabetic Foot Ulcer
Diabetic foot ulcer (DFU) is one of the most common complications of diabetes, bringing physical and mental challenges for patients due to the lack of efficient curative therapy. Despite considerable advances in pharmacological and surgical approaches, clinical trials for DFU patients remain disappointing due to the local overactive and excessive inflammation. Immunomodulatory hydrogels has significant advantages to overcome the clinical challenge of DFUs therapy. Here, recent fabrication and regenerative advances in the utilization of functional hydrogels for altering the immune microenvironment of DFUs are comprehensively reviewed. The pathological features and the healing processes of DFUs, followed by summarizing the physicochemical properties essential for the design of regenerative hydrogels for immunomodulation in DFUs, are briefly introduced. Then, the potential immuno-therapeutic modalities of hydrogels and emerging trends used to treat DFUs via multitherapeutic approaches and enhanced efficacy and safety are discussed. Taken together, by linking the structural properties of hydrogels to their functions in DFU therapy with a particular focus on immunomodulatory stimuli, this review can promote further advances in designing advanced hydrogels for DFUs, resulting in improved diabetic wound repair through translation into clinical setting in the near future.</p
- …